annotate plugins/BeatTrack.cpp @ 28:b300de89ea30

...
author Chris Cannam <c.cannam@qmul.ac.uk>
date Wed, 23 May 2007 15:21:53 +0000
parents 3256bfa04ed8
children 56fe3bd9de6e
rev   line source
c@27 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@27 2
c@27 3 /*
c@27 4 QM Vamp Plugin Set
c@27 5
c@27 6 Centre for Digital Music, Queen Mary, University of London.
c@27 7 All rights reserved.
c@27 8 */
c@27 9
c@27 10 #include "BeatTrack.h"
c@27 11
c@27 12 #include <dsp/onsets/DetectionFunction.h>
c@27 13 #include <dsp/onsets/PeakPicking.h>
c@27 14 #include <dsp/tempotracking/TempoTrack.h>
c@27 15
c@27 16 using std::string;
c@27 17 using std::vector;
c@27 18 using std::cerr;
c@27 19 using std::endl;
c@27 20
c@27 21 float BeatTracker::m_stepSecs = 0.01161;
c@27 22
c@27 23 class BeatTrackerData
c@27 24 {
c@27 25 public:
c@27 26 BeatTrackerData(const DFConfig &config) : dfConfig(config) {
c@27 27 df = new DetectionFunction(config);
c@27 28 }
c@27 29 ~BeatTrackerData() {
c@27 30 delete df;
c@27 31 }
c@27 32 void reset() {
c@27 33 delete df;
c@27 34 df = new DetectionFunction(dfConfig);
c@27 35 dfOutput.clear();
c@27 36 }
c@27 37
c@27 38 DFConfig dfConfig;
c@27 39 DetectionFunction *df;
c@27 40 vector<double> dfOutput;
c@27 41 };
c@27 42
c@27 43
c@27 44 BeatTracker::BeatTracker(float inputSampleRate) :
c@27 45 Vamp::Plugin(inputSampleRate),
c@27 46 m_d(0),
c@27 47 m_dfType(DF_COMPLEXSD)
c@27 48 {
c@27 49 }
c@27 50
c@27 51 BeatTracker::~BeatTracker()
c@27 52 {
c@27 53 delete m_d;
c@27 54 }
c@27 55
c@27 56 string
c@27 57 BeatTracker::getIdentifier() const
c@27 58 {
c@27 59 return "qm-tempotracker";
c@27 60 }
c@27 61
c@27 62 string
c@27 63 BeatTracker::getName() const
c@27 64 {
c@27 65 return "Tempo and Beat Tracker";
c@27 66 }
c@27 67
c@27 68 string
c@27 69 BeatTracker::getDescription() const
c@27 70 {
c@27 71 return "Estimate beat locations and tempo";
c@27 72 }
c@27 73
c@27 74 string
c@27 75 BeatTracker::getMaker() const
c@27 76 {
c@27 77 return "Christian Landone and Matthew Davies, Queen Mary, University of London";
c@27 78 }
c@27 79
c@27 80 int
c@27 81 BeatTracker::getPluginVersion() const
c@27 82 {
c@27 83 return 3;
c@27 84 }
c@27 85
c@27 86 string
c@27 87 BeatTracker::getCopyright() const
c@27 88 {
c@27 89 return "Copyright (c) 2006-2007 - All Rights Reserved";
c@27 90 }
c@27 91
c@27 92 BeatTracker::ParameterList
c@27 93 BeatTracker::getParameterDescriptors() const
c@27 94 {
c@27 95 ParameterList list;
c@27 96
c@27 97 ParameterDescriptor desc;
c@27 98 desc.identifier = "dftype";
c@27 99 desc.name = "Onset Detection Function Type";
c@27 100 desc.description = "Method used to calculate the onset detection function";
c@27 101 desc.minValue = 0;
c@27 102 desc.maxValue = 3;
c@27 103 desc.defaultValue = 3;
c@27 104 desc.isQuantized = true;
c@27 105 desc.quantizeStep = 1;
c@27 106 desc.valueNames.push_back("High-Frequency Content");
c@27 107 desc.valueNames.push_back("Spectral Difference");
c@27 108 desc.valueNames.push_back("Phase Deviation");
c@27 109 desc.valueNames.push_back("Complex Domain");
c@27 110 desc.valueNames.push_back("Broadband Energy Rise");
c@27 111 list.push_back(desc);
c@27 112
c@27 113 return list;
c@27 114 }
c@27 115
c@27 116 float
c@27 117 BeatTracker::getParameter(std::string name) const
c@27 118 {
c@27 119 if (name == "dftype") {
c@27 120 switch (m_dfType) {
c@27 121 case DF_HFC: return 0;
c@27 122 case DF_SPECDIFF: return 1;
c@27 123 case DF_PHASEDEV: return 2;
c@27 124 default: case DF_COMPLEXSD: return 3;
c@27 125 case DF_BROADBAND: return 4;
c@27 126 }
c@27 127 }
c@27 128 return 0.0;
c@27 129 }
c@27 130
c@27 131 void
c@27 132 BeatTracker::setParameter(std::string name, float value)
c@27 133 {
c@27 134 if (name == "dftype") {
c@27 135 switch (lrintf(value)) {
c@27 136 case 0: m_dfType = DF_HFC; break;
c@27 137 case 1: m_dfType = DF_SPECDIFF; break;
c@27 138 case 2: m_dfType = DF_PHASEDEV; break;
c@27 139 default: case 3: m_dfType = DF_COMPLEXSD; break;
c@27 140 case 4: m_dfType = DF_BROADBAND; break;
c@27 141 }
c@27 142 }
c@27 143 }
c@27 144
c@27 145 bool
c@27 146 BeatTracker::initialise(size_t channels, size_t stepSize, size_t blockSize)
c@27 147 {
c@27 148 if (m_d) {
c@27 149 delete m_d;
c@27 150 m_d = 0;
c@27 151 }
c@27 152
c@27 153 if (channels < getMinChannelCount() ||
c@27 154 channels > getMaxChannelCount()) {
c@27 155 std::cerr << "BeatTracker::initialise: Unsupported channel count: "
c@27 156 << channels << std::endl;
c@27 157 return false;
c@27 158 }
c@27 159
c@28 160 if (stepSize != getPreferredStepSize()) {
c@28 161 std::cerr << "ERROR: BeatTracker::initialise: Unsupported step size for this sample rate: "
c@28 162 << stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
c@27 163 return false;
c@27 164 }
c@27 165
c@28 166 if (blockSize != getPreferredBlockSize()) {
c@28 167 std::cerr << "WARNING: BeatTracker::initialise: Unsupported block size for this sample rate: "
c@28 168 << blockSize << " (wanted " << getPreferredBlockSize() << ")" << std::endl;
c@28 169 // return false;
c@27 170 }
c@27 171
c@27 172 DFConfig dfConfig;
c@27 173 dfConfig.DFType = m_dfType;
c@27 174 dfConfig.stepSecs = float(stepSize) / m_inputSampleRate;
c@27 175 dfConfig.stepSize = stepSize;
c@27 176 dfConfig.frameLength = blockSize;
c@27 177 dfConfig.dbRise = 3;
c@27 178
c@27 179 m_d = new BeatTrackerData(dfConfig);
c@27 180 return true;
c@27 181 }
c@27 182
c@27 183 void
c@27 184 BeatTracker::reset()
c@27 185 {
c@27 186 if (m_d) m_d->reset();
c@27 187 }
c@27 188
c@27 189 size_t
c@27 190 BeatTracker::getPreferredStepSize() const
c@27 191 {
c@27 192 size_t step = size_t(m_inputSampleRate * m_stepSecs + 0.0001);
c@27 193 // std::cerr << "BeatTracker::getPreferredStepSize: input sample rate is " << m_inputSampleRate << ", step size is " << step << std::endl;
c@27 194 return step;
c@27 195 }
c@27 196
c@27 197 size_t
c@27 198 BeatTracker::getPreferredBlockSize() const
c@27 199 {
c@28 200 size_t theoretical = getPreferredStepSize() * 2;
c@28 201
c@28 202 //!!! need power of 2
c@28 203 return theoretical;
c@27 204 }
c@27 205
c@27 206 BeatTracker::OutputList
c@27 207 BeatTracker::getOutputDescriptors() const
c@27 208 {
c@27 209 OutputList list;
c@27 210
c@27 211 OutputDescriptor beat;
c@27 212 beat.identifier = "beats";
c@27 213 beat.name = "Beats";
c@27 214 beat.description = "Estimated metrical beat locations";
c@27 215 beat.unit = "";
c@27 216 beat.hasFixedBinCount = true;
c@27 217 beat.binCount = 0;
c@27 218 beat.sampleType = OutputDescriptor::VariableSampleRate;
c@27 219 beat.sampleRate = 1.0 / m_stepSecs;
c@27 220
c@27 221 OutputDescriptor df;
c@27 222 df.identifier = "detection_fn";
c@27 223 df.name = "Onset Detection Function";
c@27 224 df.description = "Probability function of note onset likelihood";
c@27 225 df.unit = "";
c@27 226 df.hasFixedBinCount = true;
c@27 227 df.binCount = 1;
c@27 228 df.hasKnownExtents = false;
c@27 229 df.isQuantized = false;
c@27 230 df.sampleType = OutputDescriptor::OneSamplePerStep;
c@27 231
c@27 232 OutputDescriptor tempo;
c@27 233 tempo.identifier = "tempo";
c@27 234 tempo.name = "Tempo";
c@27 235 tempo.description = "Locked tempo estimates";
c@27 236 tempo.unit = "bpm";
c@27 237 tempo.hasFixedBinCount = true;
c@27 238 tempo.binCount = 1;
c@27 239 tempo.sampleType = OutputDescriptor::VariableSampleRate;
c@27 240 tempo.sampleRate = 1.0 / m_stepSecs;
c@27 241
c@27 242 list.push_back(beat);
c@27 243 list.push_back(df);
c@27 244 list.push_back(tempo);
c@27 245
c@27 246 return list;
c@27 247 }
c@27 248
c@27 249 BeatTracker::FeatureSet
c@27 250 BeatTracker::process(const float *const *inputBuffers,
c@27 251 Vamp::RealTime /* timestamp */)
c@27 252 {
c@27 253 if (!m_d) {
c@27 254 cerr << "ERROR: BeatTracker::process: "
c@27 255 << "BeatTracker has not been initialised"
c@27 256 << endl;
c@27 257 return FeatureSet();
c@27 258 }
c@27 259
c@27 260 size_t len = m_d->dfConfig.frameLength / 2;
c@27 261
c@27 262 double *magnitudes = new double[len];
c@27 263 double *phases = new double[len];
c@27 264
c@27 265 // We only support a single input channel
c@27 266
c@27 267 for (size_t i = 0; i < len; ++i) {
c@27 268
c@27 269 magnitudes[i] = sqrt(inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] +
c@27 270 inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]);
c@27 271
c@27 272 phases[i] = atan2(-inputBuffers[0][i*2+1], inputBuffers[0][i*2]);
c@27 273 }
c@27 274
c@27 275 double output = m_d->df->process(magnitudes, phases);
c@27 276
c@27 277 delete[] magnitudes;
c@27 278 delete[] phases;
c@27 279
c@27 280 m_d->dfOutput.push_back(output);
c@27 281
c@27 282 FeatureSet returnFeatures;
c@27 283
c@27 284 Feature feature;
c@27 285 feature.hasTimestamp = false;
c@27 286 feature.values.push_back(output);
c@27 287
c@27 288 returnFeatures[1].push_back(feature); // detection function is output 1
c@27 289 return returnFeatures;
c@27 290 }
c@27 291
c@27 292 BeatTracker::FeatureSet
c@27 293 BeatTracker::getRemainingFeatures()
c@27 294 {
c@27 295 if (!m_d) {
c@27 296 cerr << "ERROR: BeatTracker::getRemainingFeatures: "
c@27 297 << "BeatTracker has not been initialised"
c@27 298 << endl;
c@27 299 return FeatureSet();
c@27 300 }
c@27 301
c@27 302 double aCoeffs[] = { 1.0000, -0.5949, 0.2348 };
c@27 303 double bCoeffs[] = { 0.1600, 0.3200, 0.1600 };
c@27 304
c@27 305 TTParams ttParams;
c@27 306 ttParams.winLength = 512;
c@27 307 ttParams.lagLength = 128;
c@27 308 ttParams.LPOrd = 2;
c@27 309 ttParams.LPACoeffs = aCoeffs;
c@27 310 ttParams.LPBCoeffs = bCoeffs;
c@27 311 ttParams.alpha = 9;
c@27 312 ttParams.WinT.post = 8;
c@27 313 ttParams.WinT.pre = 7;
c@27 314
c@27 315 TempoTrack tempoTracker(ttParams);
c@27 316
c@27 317 vector<double> tempos;
c@27 318 vector<int> beats = tempoTracker.process(m_d->dfOutput, &tempos);
c@27 319
c@27 320 FeatureSet returnFeatures;
c@27 321
c@27 322 char label[100];
c@27 323
c@27 324 for (size_t i = 0; i < beats.size(); ++i) {
c@27 325
c@27 326 size_t frame = beats[i] * m_d->dfConfig.stepSize;
c@27 327
c@27 328 Feature feature;
c@27 329 feature.hasTimestamp = true;
c@27 330 feature.timestamp = Vamp::RealTime::frame2RealTime
c@27 331 (frame, lrintf(m_inputSampleRate));
c@27 332
c@27 333 float bpm = 0.0;
c@27 334 int frameIncrement = 0;
c@27 335
c@27 336 if (i < beats.size() - 1) {
c@27 337
c@27 338 frameIncrement = (beats[i+1] - beats[i]) * m_d->dfConfig.stepSize;
c@27 339
c@27 340 // one beat is frameIncrement frames, so there are
c@27 341 // samplerate/frameIncrement bps, so
c@27 342 // 60*samplerate/frameIncrement bpm
c@27 343
c@27 344 if (frameIncrement > 0) {
c@27 345 bpm = (60.0 * m_inputSampleRate) / frameIncrement;
c@27 346 bpm = int(bpm * 100.0 + 0.5) / 100.0;
c@27 347 sprintf(label, "%.2f bpm", bpm);
c@27 348 feature.label = label;
c@27 349 }
c@27 350 }
c@27 351
c@27 352 returnFeatures[0].push_back(feature); // beats are output 0
c@27 353 }
c@27 354
c@27 355 double prevTempo = 0.0;
c@27 356
c@27 357 for (size_t i = 0; i < tempos.size(); ++i) {
c@27 358
c@27 359 size_t frame = i * m_d->dfConfig.stepSize * ttParams.lagLength;
c@27 360
c@27 361 // std::cerr << "unit " << i << ", step size " << m_d->dfConfig.stepSize << ", hop " << ttParams.lagLength << ", frame = " << frame << std::endl;
c@27 362
c@27 363 if (tempos[i] > 1 && int(tempos[i] * 100) != int(prevTempo * 100)) {
c@27 364 Feature feature;
c@27 365 feature.hasTimestamp = true;
c@27 366 feature.timestamp = Vamp::RealTime::frame2RealTime
c@27 367 (frame, lrintf(m_inputSampleRate));
c@27 368 feature.values.push_back(tempos[i]);
c@27 369 sprintf(label, "%.2f bpm", tempos[i]);
c@27 370 feature.label = label;
c@27 371 returnFeatures[2].push_back(feature); // tempo is output 2
c@27 372 }
c@27 373 }
c@27 374
c@27 375 return returnFeatures;
c@27 376 }
c@27 377