c@27
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@27
|
2
|
c@27
|
3 /*
|
c@27
|
4 QM Vamp Plugin Set
|
c@27
|
5
|
c@27
|
6 Centre for Digital Music, Queen Mary, University of London.
|
c@27
|
7 All rights reserved.
|
c@27
|
8 */
|
c@27
|
9
|
c@27
|
10 #include "BeatTrack.h"
|
c@27
|
11
|
c@27
|
12 #include <dsp/onsets/DetectionFunction.h>
|
c@27
|
13 #include <dsp/onsets/PeakPicking.h>
|
c@27
|
14 #include <dsp/tempotracking/TempoTrack.h>
|
c@86
|
15 #include <dsp/tempotracking/TempoTrackV2.h>
|
c@27
|
16
|
c@27
|
17 using std::string;
|
c@27
|
18 using std::vector;
|
c@27
|
19 using std::cerr;
|
c@27
|
20 using std::endl;
|
c@27
|
21
|
c@86
|
22 float BeatTracker::m_stepSecs = 0.01161; // 512 samples at 44100
|
c@86
|
23
|
c@86
|
24 #define METHOD_OLD 0
|
c@86
|
25 #define METHOD_NEW 1
|
c@27
|
26
|
c@27
|
27 class BeatTrackerData
|
c@27
|
28 {
|
c@27
|
29 public:
|
c@27
|
30 BeatTrackerData(const DFConfig &config) : dfConfig(config) {
|
c@27
|
31 df = new DetectionFunction(config);
|
c@27
|
32 }
|
c@27
|
33 ~BeatTrackerData() {
|
c@27
|
34 delete df;
|
c@27
|
35 }
|
c@27
|
36 void reset() {
|
c@27
|
37 delete df;
|
c@27
|
38 df = new DetectionFunction(dfConfig);
|
c@27
|
39 dfOutput.clear();
|
c@85
|
40 origin = Vamp::RealTime::zeroTime;
|
c@27
|
41 }
|
c@27
|
42
|
c@27
|
43 DFConfig dfConfig;
|
c@27
|
44 DetectionFunction *df;
|
c@27
|
45 vector<double> dfOutput;
|
c@85
|
46 Vamp::RealTime origin;
|
c@27
|
47 };
|
c@27
|
48
|
c@27
|
49
|
c@27
|
50 BeatTracker::BeatTracker(float inputSampleRate) :
|
c@27
|
51 Vamp::Plugin(inputSampleRate),
|
c@27
|
52 m_d(0),
|
c@86
|
53 m_method(METHOD_NEW),
|
c@30
|
54 m_dfType(DF_COMPLEXSD),
|
c@30
|
55 m_whiten(false)
|
c@27
|
56 {
|
c@27
|
57 }
|
c@27
|
58
|
c@27
|
59 BeatTracker::~BeatTracker()
|
c@27
|
60 {
|
c@27
|
61 delete m_d;
|
c@27
|
62 }
|
c@27
|
63
|
c@27
|
64 string
|
c@27
|
65 BeatTracker::getIdentifier() const
|
c@27
|
66 {
|
c@27
|
67 return "qm-tempotracker";
|
c@27
|
68 }
|
c@27
|
69
|
c@27
|
70 string
|
c@27
|
71 BeatTracker::getName() const
|
c@27
|
72 {
|
c@27
|
73 return "Tempo and Beat Tracker";
|
c@27
|
74 }
|
c@27
|
75
|
c@27
|
76 string
|
c@27
|
77 BeatTracker::getDescription() const
|
c@27
|
78 {
|
c@27
|
79 return "Estimate beat locations and tempo";
|
c@27
|
80 }
|
c@27
|
81
|
c@27
|
82 string
|
c@27
|
83 BeatTracker::getMaker() const
|
c@27
|
84 {
|
c@50
|
85 return "Queen Mary, University of London";
|
c@27
|
86 }
|
c@27
|
87
|
c@27
|
88 int
|
c@27
|
89 BeatTracker::getPluginVersion() const
|
c@27
|
90 {
|
c@131
|
91 return 5;
|
c@27
|
92 }
|
c@27
|
93
|
c@27
|
94 string
|
c@27
|
95 BeatTracker::getCopyright() const
|
c@27
|
96 {
|
c@89
|
97 return "Plugin by Christian Landone and Matthew Davies. Copyright (c) 2006-2009 QMUL - All Rights Reserved";
|
c@27
|
98 }
|
c@27
|
99
|
c@27
|
100 BeatTracker::ParameterList
|
c@27
|
101 BeatTracker::getParameterDescriptors() const
|
c@27
|
102 {
|
c@27
|
103 ParameterList list;
|
c@27
|
104
|
c@27
|
105 ParameterDescriptor desc;
|
c@86
|
106
|
c@86
|
107 desc.identifier = "method";
|
c@86
|
108 desc.name = "Beat Tracking Method";
|
c@119
|
109 desc.description = "Basic method to use ";
|
c@86
|
110 desc.minValue = 0;
|
c@86
|
111 desc.maxValue = 1;
|
c@86
|
112 desc.defaultValue = METHOD_NEW;
|
c@86
|
113 desc.isQuantized = true;
|
c@86
|
114 desc.quantizeStep = 1;
|
c@86
|
115 desc.valueNames.push_back("Old");
|
c@86
|
116 desc.valueNames.push_back("New");
|
c@86
|
117 list.push_back(desc);
|
c@86
|
118
|
c@27
|
119 desc.identifier = "dftype";
|
c@27
|
120 desc.name = "Onset Detection Function Type";
|
c@27
|
121 desc.description = "Method used to calculate the onset detection function";
|
c@27
|
122 desc.minValue = 0;
|
c@31
|
123 desc.maxValue = 4;
|
c@27
|
124 desc.defaultValue = 3;
|
c@86
|
125 desc.valueNames.clear();
|
c@27
|
126 desc.valueNames.push_back("High-Frequency Content");
|
c@27
|
127 desc.valueNames.push_back("Spectral Difference");
|
c@27
|
128 desc.valueNames.push_back("Phase Deviation");
|
c@27
|
129 desc.valueNames.push_back("Complex Domain");
|
c@27
|
130 desc.valueNames.push_back("Broadband Energy Rise");
|
c@27
|
131 list.push_back(desc);
|
c@27
|
132
|
c@30
|
133 desc.identifier = "whiten";
|
c@30
|
134 desc.name = "Adaptive Whitening";
|
c@30
|
135 desc.description = "Normalize frequency bin magnitudes relative to recent peak levels";
|
c@30
|
136 desc.minValue = 0;
|
c@30
|
137 desc.maxValue = 1;
|
c@30
|
138 desc.defaultValue = 0;
|
c@30
|
139 desc.isQuantized = true;
|
c@30
|
140 desc.quantizeStep = 1;
|
c@30
|
141 desc.unit = "";
|
c@30
|
142 desc.valueNames.clear();
|
c@30
|
143 list.push_back(desc);
|
c@30
|
144
|
c@27
|
145 return list;
|
c@27
|
146 }
|
c@27
|
147
|
c@27
|
148 float
|
c@27
|
149 BeatTracker::getParameter(std::string name) const
|
c@27
|
150 {
|
c@27
|
151 if (name == "dftype") {
|
c@27
|
152 switch (m_dfType) {
|
c@27
|
153 case DF_HFC: return 0;
|
c@27
|
154 case DF_SPECDIFF: return 1;
|
c@27
|
155 case DF_PHASEDEV: return 2;
|
c@27
|
156 default: case DF_COMPLEXSD: return 3;
|
c@27
|
157 case DF_BROADBAND: return 4;
|
c@27
|
158 }
|
c@86
|
159 } else if (name == "method") {
|
c@86
|
160 return m_method;
|
c@30
|
161 } else if (name == "whiten") {
|
c@30
|
162 return m_whiten ? 1.0 : 0.0;
|
c@27
|
163 }
|
c@27
|
164 return 0.0;
|
c@27
|
165 }
|
c@27
|
166
|
c@27
|
167 void
|
c@27
|
168 BeatTracker::setParameter(std::string name, float value)
|
c@27
|
169 {
|
c@27
|
170 if (name == "dftype") {
|
c@27
|
171 switch (lrintf(value)) {
|
c@27
|
172 case 0: m_dfType = DF_HFC; break;
|
c@27
|
173 case 1: m_dfType = DF_SPECDIFF; break;
|
c@27
|
174 case 2: m_dfType = DF_PHASEDEV; break;
|
c@27
|
175 default: case 3: m_dfType = DF_COMPLEXSD; break;
|
c@27
|
176 case 4: m_dfType = DF_BROADBAND; break;
|
c@27
|
177 }
|
c@86
|
178 } else if (name == "method") {
|
c@86
|
179 m_method = lrintf(value);
|
c@30
|
180 } else if (name == "whiten") {
|
c@30
|
181 m_whiten = (value > 0.5);
|
c@27
|
182 }
|
c@27
|
183 }
|
c@27
|
184
|
c@27
|
185 bool
|
c@27
|
186 BeatTracker::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
c@27
|
187 {
|
c@27
|
188 if (m_d) {
|
c@27
|
189 delete m_d;
|
c@27
|
190 m_d = 0;
|
c@27
|
191 }
|
c@27
|
192
|
c@27
|
193 if (channels < getMinChannelCount() ||
|
c@27
|
194 channels > getMaxChannelCount()) {
|
c@27
|
195 std::cerr << "BeatTracker::initialise: Unsupported channel count: "
|
c@27
|
196 << channels << std::endl;
|
c@27
|
197 return false;
|
c@27
|
198 }
|
c@27
|
199
|
c@28
|
200 if (stepSize != getPreferredStepSize()) {
|
c@28
|
201 std::cerr << "ERROR: BeatTracker::initialise: Unsupported step size for this sample rate: "
|
c@28
|
202 << stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
|
c@27
|
203 return false;
|
c@27
|
204 }
|
c@27
|
205
|
c@28
|
206 if (blockSize != getPreferredBlockSize()) {
|
c@29
|
207 std::cerr << "WARNING: BeatTracker::initialise: Sub-optimal block size for this sample rate: "
|
c@28
|
208 << blockSize << " (wanted " << getPreferredBlockSize() << ")" << std::endl;
|
c@28
|
209 // return false;
|
c@27
|
210 }
|
c@27
|
211
|
c@27
|
212 DFConfig dfConfig;
|
c@27
|
213 dfConfig.DFType = m_dfType;
|
c@27
|
214 dfConfig.stepSize = stepSize;
|
c@27
|
215 dfConfig.frameLength = blockSize;
|
c@27
|
216 dfConfig.dbRise = 3;
|
c@30
|
217 dfConfig.adaptiveWhitening = m_whiten;
|
c@30
|
218 dfConfig.whiteningRelaxCoeff = -1;
|
c@30
|
219 dfConfig.whiteningFloor = -1;
|
c@27
|
220
|
c@27
|
221 m_d = new BeatTrackerData(dfConfig);
|
c@27
|
222 return true;
|
c@27
|
223 }
|
c@27
|
224
|
c@27
|
225 void
|
c@27
|
226 BeatTracker::reset()
|
c@27
|
227 {
|
c@27
|
228 if (m_d) m_d->reset();
|
c@27
|
229 }
|
c@27
|
230
|
c@27
|
231 size_t
|
c@27
|
232 BeatTracker::getPreferredStepSize() const
|
c@27
|
233 {
|
c@27
|
234 size_t step = size_t(m_inputSampleRate * m_stepSecs + 0.0001);
|
c@27
|
235 // std::cerr << "BeatTracker::getPreferredStepSize: input sample rate is " << m_inputSampleRate << ", step size is " << step << std::endl;
|
c@27
|
236 return step;
|
c@27
|
237 }
|
c@27
|
238
|
c@27
|
239 size_t
|
c@27
|
240 BeatTracker::getPreferredBlockSize() const
|
c@27
|
241 {
|
c@28
|
242 size_t theoretical = getPreferredStepSize() * 2;
|
c@28
|
243
|
c@52
|
244 // I think this is not necessarily going to be a power of two, and
|
c@52
|
245 // the host might have a problem with that, but I'm not sure we
|
c@52
|
246 // can do much about it here
|
c@28
|
247 return theoretical;
|
c@27
|
248 }
|
c@27
|
249
|
c@27
|
250 BeatTracker::OutputList
|
c@27
|
251 BeatTracker::getOutputDescriptors() const
|
c@27
|
252 {
|
c@27
|
253 OutputList list;
|
c@27
|
254
|
c@27
|
255 OutputDescriptor beat;
|
c@27
|
256 beat.identifier = "beats";
|
c@27
|
257 beat.name = "Beats";
|
c@27
|
258 beat.description = "Estimated metrical beat locations";
|
c@27
|
259 beat.unit = "";
|
c@27
|
260 beat.hasFixedBinCount = true;
|
c@27
|
261 beat.binCount = 0;
|
c@27
|
262 beat.sampleType = OutputDescriptor::VariableSampleRate;
|
c@27
|
263 beat.sampleRate = 1.0 / m_stepSecs;
|
c@27
|
264
|
c@27
|
265 OutputDescriptor df;
|
c@27
|
266 df.identifier = "detection_fn";
|
c@27
|
267 df.name = "Onset Detection Function";
|
c@27
|
268 df.description = "Probability function of note onset likelihood";
|
c@27
|
269 df.unit = "";
|
c@27
|
270 df.hasFixedBinCount = true;
|
c@27
|
271 df.binCount = 1;
|
c@27
|
272 df.hasKnownExtents = false;
|
c@27
|
273 df.isQuantized = false;
|
c@27
|
274 df.sampleType = OutputDescriptor::OneSamplePerStep;
|
c@27
|
275
|
c@27
|
276 OutputDescriptor tempo;
|
c@27
|
277 tempo.identifier = "tempo";
|
c@27
|
278 tempo.name = "Tempo";
|
c@27
|
279 tempo.description = "Locked tempo estimates";
|
c@27
|
280 tempo.unit = "bpm";
|
c@27
|
281 tempo.hasFixedBinCount = true;
|
c@27
|
282 tempo.binCount = 1;
|
c@31
|
283 tempo.hasKnownExtents = false;
|
c@31
|
284 tempo.isQuantized = false;
|
c@27
|
285 tempo.sampleType = OutputDescriptor::VariableSampleRate;
|
c@27
|
286 tempo.sampleRate = 1.0 / m_stepSecs;
|
c@27
|
287
|
c@27
|
288 list.push_back(beat);
|
c@27
|
289 list.push_back(df);
|
c@27
|
290 list.push_back(tempo);
|
c@27
|
291
|
c@27
|
292 return list;
|
c@27
|
293 }
|
c@27
|
294
|
c@27
|
295 BeatTracker::FeatureSet
|
c@27
|
296 BeatTracker::process(const float *const *inputBuffers,
|
c@85
|
297 Vamp::RealTime timestamp)
|
c@27
|
298 {
|
c@27
|
299 if (!m_d) {
|
c@27
|
300 cerr << "ERROR: BeatTracker::process: "
|
c@27
|
301 << "BeatTracker has not been initialised"
|
c@27
|
302 << endl;
|
c@27
|
303 return FeatureSet();
|
c@27
|
304 }
|
c@27
|
305
|
c@27
|
306 size_t len = m_d->dfConfig.frameLength / 2;
|
c@27
|
307
|
c@27
|
308 double *magnitudes = new double[len];
|
c@27
|
309 double *phases = new double[len];
|
c@27
|
310
|
c@27
|
311 // We only support a single input channel
|
c@27
|
312
|
c@27
|
313 for (size_t i = 0; i < len; ++i) {
|
c@27
|
314
|
c@27
|
315 magnitudes[i] = sqrt(inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] +
|
c@27
|
316 inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]);
|
c@27
|
317
|
c@27
|
318 phases[i] = atan2(-inputBuffers[0][i*2+1], inputBuffers[0][i*2]);
|
c@27
|
319 }
|
c@27
|
320
|
c@27
|
321 double output = m_d->df->process(magnitudes, phases);
|
c@27
|
322
|
c@27
|
323 delete[] magnitudes;
|
c@27
|
324 delete[] phases;
|
c@27
|
325
|
c@85
|
326 if (m_d->dfOutput.empty()) m_d->origin = timestamp;
|
c@85
|
327
|
c@27
|
328 m_d->dfOutput.push_back(output);
|
c@27
|
329
|
c@27
|
330 FeatureSet returnFeatures;
|
c@27
|
331
|
c@27
|
332 Feature feature;
|
c@27
|
333 feature.hasTimestamp = false;
|
c@27
|
334 feature.values.push_back(output);
|
c@27
|
335
|
c@27
|
336 returnFeatures[1].push_back(feature); // detection function is output 1
|
c@27
|
337 return returnFeatures;
|
c@27
|
338 }
|
c@27
|
339
|
c@27
|
340 BeatTracker::FeatureSet
|
c@27
|
341 BeatTracker::getRemainingFeatures()
|
c@27
|
342 {
|
c@27
|
343 if (!m_d) {
|
c@27
|
344 cerr << "ERROR: BeatTracker::getRemainingFeatures: "
|
c@27
|
345 << "BeatTracker has not been initialised"
|
c@27
|
346 << endl;
|
c@27
|
347 return FeatureSet();
|
c@27
|
348 }
|
c@27
|
349
|
c@86
|
350 if (m_method == METHOD_OLD) return beatTrackOld();
|
c@86
|
351 else return beatTrackNew();
|
c@86
|
352 }
|
c@86
|
353
|
c@86
|
354 BeatTracker::FeatureSet
|
c@86
|
355 BeatTracker::beatTrackOld()
|
c@86
|
356 {
|
c@27
|
357 double aCoeffs[] = { 1.0000, -0.5949, 0.2348 };
|
c@27
|
358 double bCoeffs[] = { 0.1600, 0.3200, 0.1600 };
|
c@27
|
359
|
c@27
|
360 TTParams ttParams;
|
c@27
|
361 ttParams.winLength = 512;
|
c@27
|
362 ttParams.lagLength = 128;
|
c@27
|
363 ttParams.LPOrd = 2;
|
c@27
|
364 ttParams.LPACoeffs = aCoeffs;
|
c@27
|
365 ttParams.LPBCoeffs = bCoeffs;
|
c@27
|
366 ttParams.alpha = 9;
|
c@27
|
367 ttParams.WinT.post = 8;
|
c@27
|
368 ttParams.WinT.pre = 7;
|
c@27
|
369
|
c@27
|
370 TempoTrack tempoTracker(ttParams);
|
c@27
|
371
|
c@87
|
372 vector<double> tempi;
|
c@87
|
373 vector<int> beats = tempoTracker.process(m_d->dfOutput, &tempi);
|
c@27
|
374
|
c@27
|
375 FeatureSet returnFeatures;
|
c@27
|
376
|
c@27
|
377 char label[100];
|
c@27
|
378
|
c@27
|
379 for (size_t i = 0; i < beats.size(); ++i) {
|
c@27
|
380
|
c@27
|
381 size_t frame = beats[i] * m_d->dfConfig.stepSize;
|
c@27
|
382
|
c@27
|
383 Feature feature;
|
c@27
|
384 feature.hasTimestamp = true;
|
c@85
|
385 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
|
c@27
|
386 (frame, lrintf(m_inputSampleRate));
|
c@27
|
387
|
c@27
|
388 float bpm = 0.0;
|
c@27
|
389 int frameIncrement = 0;
|
c@27
|
390
|
c@27
|
391 if (i < beats.size() - 1) {
|
c@27
|
392
|
c@27
|
393 frameIncrement = (beats[i+1] - beats[i]) * m_d->dfConfig.stepSize;
|
c@27
|
394
|
c@27
|
395 // one beat is frameIncrement frames, so there are
|
c@27
|
396 // samplerate/frameIncrement bps, so
|
c@27
|
397 // 60*samplerate/frameIncrement bpm
|
c@27
|
398
|
c@27
|
399 if (frameIncrement > 0) {
|
c@27
|
400 bpm = (60.0 * m_inputSampleRate) / frameIncrement;
|
c@27
|
401 bpm = int(bpm * 100.0 + 0.5) / 100.0;
|
c@27
|
402 sprintf(label, "%.2f bpm", bpm);
|
c@27
|
403 feature.label = label;
|
c@27
|
404 }
|
c@27
|
405 }
|
c@27
|
406
|
c@27
|
407 returnFeatures[0].push_back(feature); // beats are output 0
|
c@27
|
408 }
|
c@27
|
409
|
c@27
|
410 double prevTempo = 0.0;
|
c@27
|
411
|
c@87
|
412 for (size_t i = 0; i < tempi.size(); ++i) {
|
c@27
|
413
|
c@27
|
414 size_t frame = i * m_d->dfConfig.stepSize * ttParams.lagLength;
|
c@27
|
415
|
c@27
|
416 // std::cerr << "unit " << i << ", step size " << m_d->dfConfig.stepSize << ", hop " << ttParams.lagLength << ", frame = " << frame << std::endl;
|
c@27
|
417
|
c@87
|
418 if (tempi[i] > 1 && int(tempi[i] * 100) != int(prevTempo * 100)) {
|
c@27
|
419 Feature feature;
|
c@27
|
420 feature.hasTimestamp = true;
|
c@85
|
421 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
|
c@27
|
422 (frame, lrintf(m_inputSampleRate));
|
c@87
|
423 feature.values.push_back(tempi[i]);
|
c@87
|
424 sprintf(label, "%.2f bpm", tempi[i]);
|
c@27
|
425 feature.label = label;
|
c@27
|
426 returnFeatures[2].push_back(feature); // tempo is output 2
|
c@87
|
427 prevTempo = tempi[i];
|
c@27
|
428 }
|
c@27
|
429 }
|
c@27
|
430
|
c@27
|
431 return returnFeatures;
|
c@27
|
432 }
|
c@27
|
433
|
c@86
|
434 BeatTracker::FeatureSet
|
c@86
|
435 BeatTracker::beatTrackNew()
|
c@86
|
436 {
|
c@86
|
437 vector<double> df;
|
c@86
|
438 vector<double> beatPeriod;
|
c@87
|
439 vector<double> tempi;
|
c@86
|
440
|
c@120
|
441 size_t nonZeroCount = m_d->dfOutput.size();
|
c@120
|
442 while (nonZeroCount > 0) {
|
c@120
|
443 if (m_d->dfOutput[nonZeroCount-1] > 0.0) {
|
c@120
|
444 break;
|
c@120
|
445 }
|
c@120
|
446 --nonZeroCount;
|
c@120
|
447 }
|
c@120
|
448
|
c@120
|
449 std::cerr << "Note: nonZeroCount was " << m_d->dfOutput.size() << ", is now " << nonZeroCount << std::endl;
|
c@120
|
450
|
c@120
|
451 for (size_t i = 2; i < nonZeroCount; ++i) { // discard first two elts
|
c@86
|
452 df.push_back(m_d->dfOutput[i]);
|
c@86
|
453 beatPeriod.push_back(0.0);
|
c@86
|
454 }
|
c@86
|
455 if (df.empty()) return FeatureSet();
|
c@86
|
456
|
c@88
|
457 TempoTrackV2 tt(m_inputSampleRate, m_d->dfConfig.stepSize);
|
c@86
|
458
|
c@87
|
459 tt.calculateBeatPeriod(df, beatPeriod, tempi);
|
c@86
|
460
|
c@86
|
461 vector<double> beats;
|
c@86
|
462 tt.calculateBeats(df, beatPeriod, beats);
|
c@86
|
463
|
c@86
|
464 FeatureSet returnFeatures;
|
c@86
|
465
|
c@86
|
466 char label[100];
|
c@86
|
467
|
c@86
|
468 for (size_t i = 0; i < beats.size(); ++i) {
|
c@86
|
469
|
c@87
|
470 size_t frame = beats[i] * m_d->dfConfig.stepSize;
|
c@86
|
471
|
c@86
|
472 Feature feature;
|
c@86
|
473 feature.hasTimestamp = true;
|
c@86
|
474 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
|
c@86
|
475 (frame, lrintf(m_inputSampleRate));
|
c@86
|
476
|
c@86
|
477 float bpm = 0.0;
|
c@86
|
478 int frameIncrement = 0;
|
c@86
|
479
|
c@87
|
480 if (i+1 < beats.size()) {
|
c@86
|
481
|
c@87
|
482 frameIncrement = (beats[i+1] - beats[i]) * m_d->dfConfig.stepSize;
|
c@86
|
483
|
c@86
|
484 // one beat is frameIncrement frames, so there are
|
c@86
|
485 // samplerate/frameIncrement bps, so
|
c@86
|
486 // 60*samplerate/frameIncrement bpm
|
c@86
|
487
|
c@86
|
488 if (frameIncrement > 0) {
|
c@86
|
489 bpm = (60.0 * m_inputSampleRate) / frameIncrement;
|
c@86
|
490 bpm = int(bpm * 100.0 + 0.5) / 100.0;
|
c@86
|
491 sprintf(label, "%.2f bpm", bpm);
|
c@86
|
492 feature.label = label;
|
c@86
|
493 }
|
c@86
|
494 }
|
c@86
|
495
|
c@86
|
496 returnFeatures[0].push_back(feature); // beats are output 0
|
c@86
|
497 }
|
c@86
|
498
|
c@87
|
499 double prevTempo = 0.0;
|
c@87
|
500
|
c@87
|
501 for (size_t i = 0; i < tempi.size(); ++i) {
|
c@87
|
502
|
c@87
|
503 size_t frame = i * m_d->dfConfig.stepSize;
|
c@87
|
504
|
c@87
|
505 if (tempi[i] > 1 && int(tempi[i] * 100) != int(prevTempo * 100)) {
|
c@87
|
506 Feature feature;
|
c@87
|
507 feature.hasTimestamp = true;
|
c@87
|
508 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
|
c@87
|
509 (frame, lrintf(m_inputSampleRate));
|
c@87
|
510 feature.values.push_back(tempi[i]);
|
c@87
|
511 sprintf(label, "%.2f bpm", tempi[i]);
|
c@87
|
512 feature.label = label;
|
c@87
|
513 returnFeatures[2].push_back(feature); // tempo is output 2
|
c@87
|
514 prevTempo = tempi[i];
|
c@87
|
515 }
|
c@87
|
516 }
|
c@87
|
517
|
c@86
|
518 return returnFeatures;
|
c@86
|
519 }
|
c@86
|
520
|