annotate trunk/matlab/bmm/carfac/CARFAC_Design.m @ 567:e4c2162baca8

Update OHC_NLF parameterization and parameter values
author dicklyon@google.com
date Wed, 30 May 2012 20:49:47 +0000
parents 3e2e0ab4f708
children 66552cfadab0
rev   line source
tom@516 1 % Copyright 2012, Google, Inc.
tom@516 2 % Author: Richard F. Lyon
tom@516 3 %
tom@516 4 % This Matlab file is part of an implementation of Lyon's cochlear model:
tom@516 5 % "Cascade of Asymmetric Resonators with Fast-Acting Compression"
tom@516 6 % to supplement Lyon's upcoming book "Human and Machine Hearing"
tom@516 7 %
tom@516 8 % Licensed under the Apache License, Version 2.0 (the "License");
tom@516 9 % you may not use this file except in compliance with the License.
tom@516 10 % You may obtain a copy of the License at
tom@516 11 %
tom@516 12 % http://www.apache.org/licenses/LICENSE-2.0
tom@516 13 %
tom@516 14 % Unless required by applicable law or agreed to in writing, software
tom@516 15 % distributed under the License is distributed on an "AS IS" BASIS,
tom@516 16 % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
tom@516 17 % See the License for the specific language governing permissions and
tom@516 18 % limitations under the License.
tom@516 19
dicklyon@561 20 function CF = CARFAC_Design(n_ears, fs, CF_CAR_params, CF_AGC_params, CF_IHC_params)
dicklyon@534 21 % function CF = CARFAC_Design(fs, CF_CAR_params, ...
tom@516 22 % CF_AGC_params, ERB_break_freq, ERB_Q, CF_IHC_params)
tom@516 23 %
tom@516 24 % This function designs the CARFAC (Cascade of Asymmetric Resonators with
tom@516 25 % Fast-Acting Compression); that is, it take bundles of parameters and
tom@516 26 % computes all the filter coefficients needed to run it.
tom@516 27 %
tom@516 28 % fs is sample rate (per second)
dicklyon@534 29 % CF_CAR_params bundles all the pole-zero filter cascade parameters
tom@516 30 % CF_AGC_params bundles all the automatic gain control parameters
tom@516 31 % CF_IHC_params bundles all the inner hair cell parameters
tom@516 32 %
tom@516 33 % See other functions for designing and characterizing the CARFAC:
tom@516 34 % [naps, CF] = CARFAC_Run(CF, input_waves)
tom@516 35 % transfns = CARFAC_Transfer_Functions(CF, to_channels, from_channels)
tom@516 36 %
tom@516 37 % Defaults to Glasberg & Moore's ERB curve:
tom@516 38 % ERB_break_freq = 1000/4.37; % 228.833
tom@516 39 % ERB_Q = 1000/(24.7*4.37); % 9.2645
tom@516 40 %
tom@516 41 % All args are defaultable; for sample/default args see the code; they
tom@516 42 % make 96 channels at default fs = 22050, 114 channels at 44100.
tom@516 43
dicklyon@561 44 if nargin < 1
dicklyon@561 45 n_ears = 1; % if more than 1, make them identical channels;
dicklyon@561 46 % then modify the design if necessary for different reasons
dicklyon@561 47 end
dicklyon@561 48
dicklyon@561 49 if nargin < 2
dicklyon@561 50 fs = 22050;
dicklyon@561 51 end
dicklyon@561 52
dicklyon@561 53 if nargin < 3
dicklyon@561 54 CF_CAR_params = struct( ...
dicklyon@567 55 'velocity_scale', 0.1, ... % for the velocity nonlinearity
dicklyon@563 56 'v_offset', 0.04, ... % offset gives a quadratic part
dicklyon@561 57 'min_zeta', 0.10, ... % minimum damping factor in mid-freq channels
dicklyon@565 58 'max_zeta', 0.35, ... % maximum damping factor in mid-freq channels
dicklyon@561 59 'first_pole_theta', 0.85*pi, ...
dicklyon@561 60 'zero_ratio', sqrt(2), ... % how far zero is above pole
dicklyon@561 61 'high_f_damping_compression', 0.5, ... % 0 to 1 to compress zeta
dicklyon@561 62 'ERB_per_step', 0.5, ... % assume G&M's ERB formula
dicklyon@561 63 'min_pole_Hz', 30, ...
dicklyon@561 64 'ERB_break_freq', 165.3, ... % Greenwood map's break freq.
dicklyon@561 65 'ERB_Q', 1000/(24.7*4.37)); % Glasberg and Moore's high-cf ratio
dicklyon@561 66 end
dicklyon@561 67
dicklyon@553 68 if nargin < 4
dicklyon@561 69 CF_AGC_params = struct( ...
dicklyon@561 70 'n_stages', 4, ...
dicklyon@561 71 'time_constants', [1, 4, 16, 64]*0.002, ...
dicklyon@561 72 'AGC_stage_gain', 2, ... % gain from each stage to next slower stage
dicklyon@565 73 'decimation', [8, 2, 2, 2], ... % how often to update the AGC states
dicklyon@561 74 'AGC1_scales', [1.0, 1.4, 2.0, 2.8], ... % in units of channels
dicklyon@561 75 'AGC2_scales', [1.6, 2.25, 3.2, 4.5], ... % spread more toward base
dicklyon@561 76 'AGC_mix_coeff', 0.5);
dicklyon@561 77 end
dicklyon@561 78
dicklyon@561 79 if nargin < 5
tom@516 80 % HACK: these constant control the defaults
tom@516 81 one_cap = 0; % bool; 0 for new two-cap hack
tom@516 82 just_hwr = 0; % book; 0 for normal/fancy IHC; 1 for HWR
tom@516 83 if just_hwr
dicklyon@565 84 CF_IHC_params = struct('just_hwr', 1, ... % just a simple HWR
dicklyon@565 85 'ac_corner_Hz', 20);
tom@516 86 else
tom@516 87 if one_cap
tom@516 88 CF_IHC_params = struct( ...
dicklyon@523 89 'just_hwr', just_hwr, ... % not just a simple HWR
tom@516 90 'one_cap', one_cap, ... % bool; 0 for new two-cap hack
tom@516 91 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
tom@516 92 'tau_out', 0.0005, ... % depletion tau is pretty fast
dicklyon@565 93 'tau_in', 0.010, ... % recovery tau is slower
dicklyon@565 94 'ac_corner_Hz', 20);
tom@516 95 else
tom@516 96 CF_IHC_params = struct( ...
dicklyon@523 97 'just_hwr', just_hwr, ... % not just a simple HWR
tom@516 98 'one_cap', one_cap, ... % bool; 0 for new two-cap hack
tom@516 99 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
dicklyon@556 100 'tau1_out', 0.010, ... % depletion tau is pretty fast
tom@516 101 'tau1_in', 0.020, ... % recovery tau is slower
dicklyon@556 102 'tau2_out', 0.0025, ... % depletion tau is pretty fast
dicklyon@565 103 'tau2_in', 0.005, ... % recovery tau is slower
dicklyon@565 104 'ac_corner_Hz', 20);
tom@516 105 end
tom@516 106 end
tom@516 107 end
tom@516 108
tom@516 109
tom@516 110
tom@516 111 % first figure out how many filter stages (PZFC/CARFAC channels):
dicklyon@534 112 pole_Hz = CF_CAR_params.first_pole_theta * fs / (2*pi);
tom@516 113 n_ch = 0;
dicklyon@534 114 while pole_Hz > CF_CAR_params.min_pole_Hz
tom@516 115 n_ch = n_ch + 1;
dicklyon@534 116 pole_Hz = pole_Hz - CF_CAR_params.ERB_per_step * ...
dicklyon@553 117 ERB_Hz(pole_Hz, CF_CAR_params.ERB_break_freq, CF_CAR_params.ERB_Q);
tom@516 118 end
tom@516 119 % Now we have n_ch, the number of channels, so can make the array
tom@516 120 % and compute all the frequencies again to put into it:
tom@516 121 pole_freqs = zeros(n_ch, 1);
dicklyon@534 122 pole_Hz = CF_CAR_params.first_pole_theta * fs / (2*pi);
tom@516 123 for ch = 1:n_ch
tom@516 124 pole_freqs(ch) = pole_Hz;
dicklyon@534 125 pole_Hz = pole_Hz - CF_CAR_params.ERB_per_step * ...
dicklyon@553 126 ERB_Hz(pole_Hz, CF_CAR_params.ERB_break_freq, CF_CAR_params.ERB_Q);
tom@516 127 end
tom@516 128 % now we have n_ch, the number of channels, and pole_freqs array
tom@516 129
dicklyon@528 130 max_channels_per_octave = log(2) / log(pole_freqs(1)/pole_freqs(2));
dicklyon@528 131
dicklyon@561 132 % convert to include an ear_array, each w coeffs and state...
dicklyon@561 133 CAR_coeffs = CARFAC_DesignFilters(CF_CAR_params, fs, pole_freqs);
dicklyon@561 134 AGC_coeffs = CARFAC_DesignAGC(CF_AGC_params, fs, n_ch);
dicklyon@561 135 IHC_coeffs = CARFAC_DesignIHC(CF_IHC_params, fs, n_ch);
dicklyon@561 136 % copy same designed coeffs into each ear (can do differently in the
dicklyon@561 137 % future:
dicklyon@561 138 for ear = 1:n_ears
dicklyon@561 139 ears(ear).CAR_coeffs = CAR_coeffs;
dicklyon@561 140 ears(ear).AGC_coeffs = AGC_coeffs;
dicklyon@561 141 ears(ear).IHC_coeffs = IHC_coeffs;
dicklyon@561 142 end
dicklyon@561 143
tom@516 144 CF = struct( ...
tom@516 145 'fs', fs, ...
dicklyon@528 146 'max_channels_per_octave', max_channels_per_octave, ...
dicklyon@534 147 'CAR_params', CF_CAR_params, ...
tom@516 148 'AGC_params', CF_AGC_params, ...
tom@516 149 'IHC_params', CF_IHC_params, ...
tom@516 150 'n_ch', n_ch, ...
tom@516 151 'pole_freqs', pole_freqs, ...
dicklyon@561 152 'ears', ears, ...
dicklyon@561 153 'n_ears', n_ears );
tom@516 154
tom@516 155
dicklyon@534 156
tom@516 157 %% Design the filter coeffs:
dicklyon@534 158 function CAR_coeffs = CARFAC_DesignFilters(CAR_params, fs, pole_freqs)
tom@516 159
tom@516 160 n_ch = length(pole_freqs);
tom@516 161
tom@516 162 % the filter design coeffs:
dicklyon@567 163 % scalars first:
dicklyon@534 164 CAR_coeffs = struct( ...
dicklyon@534 165 'n_ch', n_ch, ...
dicklyon@534 166 'velocity_scale', CAR_params.velocity_scale, ...
dicklyon@567 167 'v_offset', CAR_params.v_offset ...
dicklyon@523 168 );
tom@516 169
dicklyon@559 170 % don't really need these zero arrays, but it's a clue to what fields
dicklyon@559 171 % and types are need in ohter language implementations:
dicklyon@534 172 CAR_coeffs.r1_coeffs = zeros(n_ch, 1);
dicklyon@534 173 CAR_coeffs.a0_coeffs = zeros(n_ch, 1);
dicklyon@534 174 CAR_coeffs.c0_coeffs = zeros(n_ch, 1);
dicklyon@534 175 CAR_coeffs.h_coeffs = zeros(n_ch, 1);
dicklyon@534 176 CAR_coeffs.g0_coeffs = zeros(n_ch, 1);
tom@516 177
tom@516 178 % zero_ratio comes in via h. In book's circuit D, zero_ratio is 1/sqrt(a),
tom@516 179 % and that a is here 1 / (1+f) where h = f*c.
tom@516 180 % solve for f: 1/zero_ratio^2 = 1 / (1+f)
tom@516 181 % zero_ratio^2 = 1+f => f = zero_ratio^2 - 1
dicklyon@534 182 f = CAR_params.zero_ratio^2 - 1; % nominally 1 for half-octave
tom@516 183
tom@516 184 % Make pole positions, s and c coeffs, h and g coeffs, etc.,
tom@516 185 % which mostly depend on the pole angle theta:
tom@516 186 theta = pole_freqs .* (2 * pi / fs);
tom@516 187
dicklyon@530 188 c0 = sin(theta);
dicklyon@530 189 a0 = cos(theta);
dicklyon@530 190
tom@516 191 % different possible interpretations for min-damping r:
dicklyon@534 192 % r = exp(-theta * CF_CAR_params.min_zeta).
dicklyon@530 193 % Compress theta to give somewhat higher Q at highest thetas:
dicklyon@534 194 ff = CAR_params.high_f_damping_compression; % 0 to 1; typ. 0.5
dicklyon@530 195 x = theta/pi;
dicklyon@565 196
dicklyon@530 197 zr_coeffs = pi * (x - ff * x.^3); % when ff is 0, this is just theta,
dicklyon@530 198 % and when ff is 1 it goes to zero at theta = pi.
dicklyon@565 199 max_zeta = CAR_params.max_zeta;
dicklyon@565 200 CAR_coeffs.r1_coeffs = (1 - zr_coeffs .* max_zeta); % "r1" for the max-damping condition
dicklyon@530 201
dicklyon@534 202 min_zeta = CAR_params.min_zeta;
dicklyon@565 203 % Increase the min damping where channels are spaced out more, by pulling
dicklyon@565 204 % 25% of the way toward ERB_Hz/pole_freqs (close to 0.1 at high f)
dicklyon@565 205 min_zetas = min_zeta + 0.25*(ERB_Hz(pole_freqs, ...
dicklyon@553 206 CAR_params.ERB_break_freq, CAR_params.ERB_Q) ./ pole_freqs - min_zeta);
dicklyon@565 207 CAR_coeffs.zr_coeffs = zr_coeffs .* ...
dicklyon@565 208 (max_zeta - min_zetas); % how r relates to undamping
tom@516 209
tom@516 210 % undamped coupled-form coefficients:
dicklyon@534 211 CAR_coeffs.a0_coeffs = a0;
dicklyon@534 212 CAR_coeffs.c0_coeffs = c0;
tom@516 213
tom@516 214 % the zeros follow via the h_coeffs
dicklyon@530 215 h = c0 .* f;
dicklyon@534 216 CAR_coeffs.h_coeffs = h;
tom@516 217
dicklyon@530 218 % for unity gain at min damping, radius r; only used in CARFAC_Init:
dicklyon@565 219 relative_undamping = ones(n_ch, 1); % max undamping to start
dicklyon@534 220 % this function needs to take CAR_coeffs even if we haven't finished
dicklyon@530 221 % constucting it by putting in the g0_coeffs:
dicklyon@565 222 CAR_coeffs.g0_coeffs = CARFAC_Stage_g(CAR_coeffs, relative_undamping);
tom@516 223
tom@516 224
tom@516 225 %% the AGC design coeffs:
dicklyon@534 226 function AGC_coeffs = CARFAC_DesignAGC(AGC_params, fs, n_ch)
tom@516 227
dicklyon@534 228 n_AGC_stages = AGC_params.n_stages;
dicklyon@534 229 AGC_coeffs = struct( ...
dicklyon@534 230 'n_ch', n_ch, ...
dicklyon@534 231 'n_AGC_stages', n_AGC_stages, ...
dicklyon@534 232 'AGC_stage_gain', AGC_params.AGC_stage_gain);
tom@516 233
tom@516 234 % AGC1 pass is smoothing from base toward apex;
dicklyon@559 235 % AGC2 pass is back, which is done first now (in double exp. version)
tom@516 236 AGC1_scales = AGC_params.AGC1_scales;
tom@516 237 AGC2_scales = AGC_params.AGC2_scales;
tom@516 238
tom@516 239 AGC_coeffs.AGC_epsilon = zeros(1, n_AGC_stages); % the 1/(tau*fs) roughly
dicklyon@523 240 decim = 1;
dicklyon@523 241 AGC_coeffs.decimation = AGC_params.decimation;
dicklyon@523 242
dicklyon@523 243 total_DC_gain = 0;
tom@516 244 for stage = 1:n_AGC_stages
dicklyon@525 245 tau = AGC_params.time_constants(stage); % time constant in seconds
dicklyon@525 246 decim = decim * AGC_params.decimation(stage); % net decim to this stage
tom@516 247 % epsilon is how much new input to take at each update step:
tom@516 248 AGC_coeffs.AGC_epsilon(stage) = 1 - exp(-decim / (tau * fs));
dicklyon@523 249 % effective number of smoothings in a time constant:
dicklyon@525 250 ntimes = tau * (fs / decim); % typically 5 to 50
dicklyon@524 251
dicklyon@524 252 % decide on target spread (variance) and delay (mean) of impulse
dicklyon@524 253 % response as a distribution to be convolved ntimes:
dicklyon@525 254 % TODO (dicklyon): specify spread and delay instead of scales???
dicklyon@524 255 delay = (AGC2_scales(stage) - AGC1_scales(stage)) / ntimes;
dicklyon@524 256 spread_sq = (AGC1_scales(stage)^2 + AGC2_scales(stage)^2) / ntimes;
dicklyon@524 257
dicklyon@561 258 % get pole positions to better match intended spread and delay of
dicklyon@525 259 % [[geometric distribution]] in each direction (see wikipedia)
dicklyon@524 260 u = 1 + 1 / spread_sq; % these are based on off-line algebra hacking.
dicklyon@524 261 p = u - sqrt(u^2 - 1); % pole that would give spread if used twice.
dicklyon@524 262 dp = delay * (1 - 2*p +p^2)/2;
dicklyon@524 263 polez1 = p - dp;
dicklyon@524 264 polez2 = p + dp;
dicklyon@523 265 AGC_coeffs.AGC_polez1(stage) = polez1;
dicklyon@523 266 AGC_coeffs.AGC_polez2(stage) = polez2;
dicklyon@523 267
dicklyon@525 268 % try a 3- or 5-tap FIR as an alternative to the double exponential:
dicklyon@525 269 n_taps = 0;
dicklyon@525 270 FIR_OK = 0;
dicklyon@525 271 n_iterations = 1;
dicklyon@525 272 while ~FIR_OK
dicklyon@525 273 switch n_taps
dicklyon@525 274 case 0
dicklyon@525 275 % first attempt a 3-point FIR to apply once:
dicklyon@525 276 n_taps = 3;
dicklyon@525 277 case 3
dicklyon@525 278 % second time through, go wider but stick to 1 iteration
dicklyon@525 279 n_taps = 5;
dicklyon@525 280 case 5
dicklyon@525 281 % apply FIR multiple times instead of going wider:
dicklyon@525 282 n_iterations = n_iterations + 1;
dicklyon@525 283 if n_iterations > 16
dicklyon@525 284 error('Too many n_iterations in CARFAC_DesignAGC');
dicklyon@525 285 end
dicklyon@525 286 otherwise
dicklyon@525 287 % to do other n_taps would need changes in CARFAC_Spatial_Smooth
dicklyon@525 288 % and in Design_FIR_coeffs
dicklyon@525 289 error('Bad n_taps in CARFAC_DesignAGC');
dicklyon@523 290 end
dicklyon@525 291 [AGC_spatial_FIR, FIR_OK] = Design_FIR_coeffs( ...
dicklyon@525 292 n_taps, spread_sq, delay, n_iterations);
dicklyon@523 293 end
dicklyon@525 294 % when FIR_OK, store the resulting FIR design in coeffs:
dicklyon@523 295 AGC_coeffs.AGC_spatial_iterations(stage) = n_iterations;
dicklyon@523 296 AGC_coeffs.AGC_spatial_FIR(:,stage) = AGC_spatial_FIR;
dicklyon@536 297 AGC_coeffs.AGC_spatial_n_taps(stage) = n_taps;
dicklyon@523 298
dicklyon@525 299 % accumulate DC gains from all the stages, accounting for stage_gain:
dicklyon@523 300 total_DC_gain = total_DC_gain + AGC_params.AGC_stage_gain^(stage-1);
dicklyon@523 301
dicklyon@525 302 % TODO (dicklyon) -- is this the best binaural mixing plan?
dicklyon@523 303 if stage == 1
dicklyon@523 304 AGC_coeffs.AGC_mix_coeffs(stage) = 0;
dicklyon@523 305 else
dicklyon@523 306 AGC_coeffs.AGC_mix_coeffs(stage) = AGC_params.AGC_mix_coeff / ...
dicklyon@523 307 (tau * (fs / decim));
dicklyon@523 308 end
tom@516 309 end
tom@516 310
dicklyon@524 311 AGC_coeffs.AGC_gain = total_DC_gain;
dicklyon@523 312
dicklyon@565 313 % adjust the detect_scale to be the reciprocal DC gain of the AGC filters:
dicklyon@565 314 AGC_coeffs.detect_scale = 1 / total_DC_gain;
dicklyon@525 315
dicklyon@525 316
dicklyon@525 317 %%
dicklyon@525 318 function [FIR, OK] = Design_FIR_coeffs(n_taps, var, mn, n_iter)
dicklyon@525 319 % function [FIR, OK] = Design_FIR_coeffs(n_taps, spread_sq, delay, n_iter)
dicklyon@525 320
dicklyon@525 321 % reduce mean and variance of smoothing distribution by n_iterations:
dicklyon@525 322 mn = mn / n_iter;
dicklyon@525 323 var = var / n_iter;
dicklyon@525 324 switch n_taps
dicklyon@525 325 case 3
dicklyon@525 326 % based on solving to match mean and variance of [a, 1-a-b, b]:
dicklyon@525 327 a = (var + mn*mn - mn) / 2;
dicklyon@525 328 b = (var + mn*mn + mn) / 2;
dicklyon@525 329 FIR = [a, 1 - a - b, b];
dicklyon@525 330 OK = FIR(2) >= 0.2;
dicklyon@525 331 case 5
dicklyon@525 332 % based on solving to match [a/2, a/2, 1-a-b, b/2, b/2]:
dicklyon@525 333 a = ((var + mn*mn)*2/5 - mn*2/3) / 2;
dicklyon@525 334 b = ((var + mn*mn)*2/5 + mn*2/3) / 2;
dicklyon@525 335 % first and last coeffs are implicitly duplicated to make 5-point FIR:
dicklyon@525 336 FIR = [a/2, 1 - a - b, b/2];
dicklyon@525 337 OK = FIR(2) >= 0.1;
dicklyon@525 338 otherwise
dicklyon@525 339 error('Bad n_taps in AGC_spatial_FIR');
dicklyon@525 340 end
dicklyon@523 341
tom@516 342
tom@516 343 %% the IHC design coeffs:
dicklyon@534 344 function IHC_coeffs = CARFAC_DesignIHC(IHC_params, fs, n_ch)
tom@516 345
tom@516 346 if IHC_params.just_hwr
dicklyon@561 347 IHC_coeffs = struct( ...
dicklyon@561 348 'n_ch', n_ch, ...
dicklyon@561 349 'just_hwr', 1);
tom@516 350 else
tom@516 351 if IHC_params.one_cap
dicklyon@565 352 ro = 1 / CARFAC_Detect(10); % output resistance at a very high level
dicklyon@556 353 c = IHC_params.tau_out / ro;
dicklyon@556 354 ri = IHC_params.tau_in / c;
dicklyon@556 355 % to get steady-state average, double ro for 50% duty cycle
dicklyon@556 356 saturation_output = 1 / (2*ro + ri);
dicklyon@556 357 % also consider the zero-signal equilibrium:
dicklyon@556 358 r0 = 1 / CARFAC_Detect(0);
dicklyon@556 359 current = 1 / (ri + r0);
dicklyon@556 360 cap_voltage = 1 - current * ri;
dicklyon@534 361 IHC_coeffs = struct( ...
dicklyon@534 362 'n_ch', n_ch, ...
tom@516 363 'just_hwr', 0, ...
tom@516 364 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
dicklyon@556 365 'out_rate', ro / (IHC_params.tau_out * fs), ...
tom@516 366 'in_rate', 1 / (IHC_params.tau_in * fs), ...
dicklyon@556 367 'one_cap', IHC_params.one_cap, ...
dicklyon@556 368 'output_gain', 1/ (saturation_output - current), ...
dicklyon@556 369 'rest_output', current / (saturation_output - current), ...
dicklyon@556 370 'rest_cap', cap_voltage);
dicklyon@556 371 % one-channel state for testing/verification:
dicklyon@556 372 IHC_state = struct( ...
dicklyon@556 373 'cap_voltage', IHC_coeffs.rest_cap, ...
dicklyon@556 374 'lpf1_state', 0, ...
dicklyon@556 375 'lpf2_state', 0, ...
dicklyon@561 376 'ihc_accum', 0);
dicklyon@560 377 else
dicklyon@565 378 ro = 1 / CARFAC_Detect(10); % output resistance at a very high level
dicklyon@556 379 c2 = IHC_params.tau2_out / ro;
dicklyon@556 380 r2 = IHC_params.tau2_in / c2;
dicklyon@556 381 c1 = IHC_params.tau1_out / r2;
dicklyon@556 382 r1 = IHC_params.tau1_in / c1;
dicklyon@556 383 % to get steady-state average, double ro for 50% duty cycle
dicklyon@556 384 saturation_output = 1 / (2*ro + r2 + r1);
dicklyon@556 385 % also consider the zero-signal equilibrium:
dicklyon@556 386 r0 = 1 / CARFAC_Detect(0);
dicklyon@556 387 current = 1 / (r1 + r2 + r0);
dicklyon@556 388 cap1_voltage = 1 - current * r1;
dicklyon@556 389 cap2_voltage = cap1_voltage - current * r2;
tom@516 390 IHC_coeffs = struct(...
dicklyon@534 391 'n_ch', n_ch, ...
tom@516 392 'just_hwr', 0, ...
tom@516 393 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
tom@516 394 'out1_rate', 1 / (IHC_params.tau1_out * fs), ...
tom@516 395 'in1_rate', 1 / (IHC_params.tau1_in * fs), ...
dicklyon@556 396 'out2_rate', ro / (IHC_params.tau2_out * fs), ...
tom@516 397 'in2_rate', 1 / (IHC_params.tau2_in * fs), ...
dicklyon@556 398 'one_cap', IHC_params.one_cap, ...
dicklyon@556 399 'output_gain', 1/ (saturation_output - current), ...
dicklyon@556 400 'rest_output', current / (saturation_output - current), ...
dicklyon@556 401 'rest_cap2', cap2_voltage, ...
dicklyon@556 402 'rest_cap1', cap1_voltage);
dicklyon@556 403 % one-channel state for testing/verification:
dicklyon@556 404 IHC_state = struct( ...
dicklyon@556 405 'cap1_voltage', IHC_coeffs.rest_cap1, ...
dicklyon@556 406 'cap2_voltage', IHC_coeffs.rest_cap2, ...
dicklyon@556 407 'lpf1_state', 0, ...
dicklyon@556 408 'lpf2_state', 0, ...
dicklyon@556 409 'ihc_accum', 0);
tom@516 410 end
tom@516 411 end
dicklyon@565 412 % one more late addition that applies to all cases:
dicklyon@565 413 IHC_coeffs.ac_coeff = 2 * pi * IHC_params.ac_corner_Hz / fs;
tom@516 414
tom@516 415 %%
tom@516 416 % default design result, running this function with no args, should look
tom@516 417 % like this, before CARFAC_Init puts state storage into it:
tom@516 418 %
dicklyon@523 419 %
tom@516 420 % CF = CARFAC_Design
dicklyon@565 421 % CAR_params = CF.CAR_params
dicklyon@565 422 % AGC_params = CF.AGC_params
dicklyon@565 423 % IHC_params = CF.IHC_params
dicklyon@565 424 % CAR_coeffs = CF.ears(1).CAR_coeffs
dicklyon@565 425 % AGC_coeffs = CF.ears(1).AGC_coeffs
dicklyon@565 426 % AGC_spatial_FIR = AGC_coeffs.AGC_spatial_FIR
dicklyon@565 427 % IHC_coeffs = CF.ears(1).IHC_coeffs
dicklyon@565 428
dicklyon@565 429 % CF =
dicklyon@530 430 % fs: 22050
dicklyon@556 431 % max_channels_per_octave: 12.2709
dicklyon@556 432 % CAR_params: [1x1 struct]
dicklyon@530 433 % AGC_params: [1x1 struct]
dicklyon@530 434 % IHC_params: [1x1 struct]
dicklyon@556 435 % n_ch: 71
dicklyon@556 436 % pole_freqs: [71x1 double]
dicklyon@565 437 % ears: [1x1 struct]
dicklyon@565 438 % n_ears: 1
dicklyon@565 439 % CAR_params =
dicklyon@565 440 % velocity_scale: 0.0500
dicklyon@565 441 % v_offset: 0.0400
dicklyon@530 442 % v2_corner: 0.2000
dicklyon@533 443 % min_zeta: 0.1000
dicklyon@565 444 % max_zeta: 0.3500
dicklyon@530 445 % first_pole_theta: 2.6704
dicklyon@530 446 % zero_ratio: 1.4142
dicklyon@530 447 % high_f_damping_compression: 0.5000
dicklyon@530 448 % ERB_per_step: 0.5000
dicklyon@530 449 % min_pole_Hz: 30
dicklyon@556 450 % ERB_break_freq: 165.3000
dicklyon@556 451 % ERB_Q: 9.2645
dicklyon@565 452 % AGC_params =
tom@516 453 % n_stages: 4
tom@516 454 % time_constants: [0.0020 0.0080 0.0320 0.1280]
tom@516 455 % AGC_stage_gain: 2
dicklyon@523 456 % decimation: [8 2 2 2]
dicklyon@556 457 % AGC1_scales: [1 1.4000 2 2.8000]
dicklyon@556 458 % AGC2_scales: [1.6000 2.2500 3.2000 4.5000]
dicklyon@530 459 % AGC_mix_coeff: 0.5000
dicklyon@565 460 % IHC_params =
dicklyon@565 461 % just_hwr: 0
dicklyon@565 462 % one_cap: 0
dicklyon@565 463 % tau_lpf: 8.0000e-05
dicklyon@565 464 % tau1_out: 0.0100
dicklyon@565 465 % tau1_in: 0.0200
dicklyon@565 466 % tau2_out: 0.0025
dicklyon@565 467 % tau2_in: 0.0050
dicklyon@565 468 % ac_corner_Hz: 20
dicklyon@565 469 % CAR_coeffs =
dicklyon@556 470 % n_ch: 71
dicklyon@565 471 % velocity_scale: 0.0500
dicklyon@565 472 % v_offset: 0.0400
dicklyon@523 473 % v2_corner: 0.2000
dicklyon@556 474 % r1_coeffs: [71x1 double]
dicklyon@556 475 % a0_coeffs: [71x1 double]
dicklyon@556 476 % c0_coeffs: [71x1 double]
dicklyon@556 477 % h_coeffs: [71x1 double]
dicklyon@556 478 % g0_coeffs: [71x1 double]
dicklyon@556 479 % zr_coeffs: [71x1 double]
dicklyon@565 480 % AGC_coeffs =
dicklyon@556 481 % n_ch: 71
dicklyon@556 482 % n_AGC_stages: 4
dicklyon@523 483 % AGC_stage_gain: 2
dicklyon@523 484 % AGC_epsilon: [0.1659 0.0867 0.0443 0.0224]
dicklyon@523 485 % decimation: [8 2 2 2]
dicklyon@556 486 % AGC_polez1: [0.1699 0.1780 0.1872 0.1903]
dicklyon@556 487 % AGC_polez2: [0.2388 0.2271 0.2216 0.2148]
dicklyon@556 488 % AGC_spatial_iterations: [1 1 1 1]
dicklyon@523 489 % AGC_spatial_FIR: [3x4 double]
dicklyon@556 490 % AGC_spatial_n_taps: [3 3 3 3]
dicklyon@530 491 % AGC_mix_coeffs: [0 0.0454 0.0227 0.0113]
dicklyon@523 492 % AGC_gain: 15
dicklyon@565 493 % detect_scale: 0.0667
dicklyon@565 494 % AGC_spatial_FIR =
dicklyon@565 495 % 0.2744 0.2829 0.2972 0.2999
dicklyon@565 496 % 0.3423 0.3571 0.3512 0.3616
dicklyon@565 497 % 0.3832 0.3600 0.3516 0.3385
dicklyon@565 498 % IHC_coeffs =
dicklyon@556 499 % n_ch: 71
dicklyon@556 500 % just_hwr: 0
dicklyon@556 501 % lpf_coeff: 0.4327
dicklyon@556 502 % out1_rate: 0.0045
dicklyon@556 503 % in1_rate: 0.0023
dicklyon@565 504 % out2_rate: 0.0199
dicklyon@556 505 % in2_rate: 0.0091
dicklyon@556 506 % one_cap: 0
dicklyon@565 507 % output_gain: 12.1185
dicklyon@565 508 % rest_output: 0.3791
dicklyon@565 509 % rest_cap2: 0.7938
dicklyon@565 510 % rest_cap1: 0.8625
dicklyon@565 511 % ac_coeff: 0.0057
dicklyon@565 512
dicklyon@565 513
dicklyon@565 514