annotate trunk/matlab/bmm/carfac/CARFAC_Design.m @ 530:fb60ea429bb8

reparameterize stage gain g and compressed damping with theta; interpolate g
author dicklyon@google.com
date Sun, 11 Mar 2012 00:31:57 +0000
parents 741187dc780f
children 55c46c01e522
rev   line source
tom@516 1 % Copyright 2012, Google, Inc.
tom@516 2 % Author: Richard F. Lyon
tom@516 3 %
tom@516 4 % This Matlab file is part of an implementation of Lyon's cochlear model:
tom@516 5 % "Cascade of Asymmetric Resonators with Fast-Acting Compression"
tom@516 6 % to supplement Lyon's upcoming book "Human and Machine Hearing"
tom@516 7 %
tom@516 8 % Licensed under the Apache License, Version 2.0 (the "License");
tom@516 9 % you may not use this file except in compliance with the License.
tom@516 10 % You may obtain a copy of the License at
tom@516 11 %
tom@516 12 % http://www.apache.org/licenses/LICENSE-2.0
tom@516 13 %
tom@516 14 % Unless required by applicable law or agreed to in writing, software
tom@516 15 % distributed under the License is distributed on an "AS IS" BASIS,
tom@516 16 % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
tom@516 17 % See the License for the specific language governing permissions and
tom@516 18 % limitations under the License.
tom@516 19
tom@516 20 function CF = CARFAC_Design(fs, CF_filter_params, ...
tom@516 21 CF_AGC_params, ERB_break_freq, ERB_Q, CF_IHC_params)
tom@516 22 % function CF = CARFAC_Design(fs, CF_filter_params, ...
tom@516 23 % CF_AGC_params, ERB_break_freq, ERB_Q, CF_IHC_params)
tom@516 24 %
tom@516 25 % This function designs the CARFAC (Cascade of Asymmetric Resonators with
tom@516 26 % Fast-Acting Compression); that is, it take bundles of parameters and
tom@516 27 % computes all the filter coefficients needed to run it.
tom@516 28 %
tom@516 29 % fs is sample rate (per second)
tom@516 30 % CF_filter_params bundles all the pole-zero filter cascade parameters
tom@516 31 % CF_AGC_params bundles all the automatic gain control parameters
tom@516 32 % CF_IHC_params bundles all the inner hair cell parameters
tom@516 33 %
tom@516 34 % See other functions for designing and characterizing the CARFAC:
tom@516 35 % [naps, CF] = CARFAC_Run(CF, input_waves)
tom@516 36 % transfns = CARFAC_Transfer_Functions(CF, to_channels, from_channels)
tom@516 37 %
tom@516 38 % Defaults to Glasberg & Moore's ERB curve:
tom@516 39 % ERB_break_freq = 1000/4.37; % 228.833
tom@516 40 % ERB_Q = 1000/(24.7*4.37); % 9.2645
tom@516 41 %
tom@516 42 % All args are defaultable; for sample/default args see the code; they
tom@516 43 % make 96 channels at default fs = 22050, 114 channels at 44100.
tom@516 44
tom@516 45 if nargin < 6
tom@516 46 % HACK: these constant control the defaults
tom@516 47 one_cap = 0; % bool; 0 for new two-cap hack
tom@516 48 just_hwr = 0; % book; 0 for normal/fancy IHC; 1 for HWR
tom@516 49 if just_hwr
tom@516 50 CF_IHC_params = struct('just_hwr', 1); % just a simple HWR
tom@516 51 else
tom@516 52 if one_cap
tom@516 53 CF_IHC_params = struct( ...
dicklyon@523 54 'just_hwr', just_hwr, ... % not just a simple HWR
tom@516 55 'one_cap', one_cap, ... % bool; 0 for new two-cap hack
tom@516 56 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
tom@516 57 'tau_out', 0.0005, ... % depletion tau is pretty fast
tom@516 58 'tau_in', 0.010 ); % recovery tau is slower
tom@516 59 else
tom@516 60 CF_IHC_params = struct( ...
dicklyon@523 61 'just_hwr', just_hwr, ... % not just a simple HWR
tom@516 62 'one_cap', one_cap, ... % bool; 0 for new two-cap hack
tom@516 63 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
tom@516 64 'tau1_out', 0.020, ... % depletion tau is pretty fast
tom@516 65 'tau1_in', 0.020, ... % recovery tau is slower
tom@516 66 'tau2_out', 0.005, ... % depletion tau is pretty fast
tom@516 67 'tau2_in', 0.005 ); % recovery tau is slower
tom@516 68 end
tom@516 69 end
tom@516 70 end
tom@516 71
tom@516 72 if nargin < 5
tom@516 73 % Ref: Glasberg and Moore: Hearing Research, 47 (1990), 103-138
tom@516 74 % ERB = 24.7 * (1 + 4.37 * CF_Hz / 1000);
tom@516 75 ERB_Q = 1000/(24.7*4.37); % 9.2645
tom@516 76 if nargin < 4
tom@516 77 ERB_break_freq = 1000/4.37; % 228.833
tom@516 78 end
tom@516 79 end
tom@516 80
tom@516 81 if nargin < 3
tom@516 82 CF_AGC_params = struct( ...
tom@516 83 'n_stages', 4, ...
tom@516 84 'time_constants', [1, 4, 16, 64]*0.002, ...
tom@516 85 'AGC_stage_gain', 2, ... % gain from each stage to next slower stage
dicklyon@523 86 'decimation', [8, 2, 2, 2], ... % how often to update the AGC states
dicklyon@524 87 'AGC1_scales', [1, 2, 4, 6]*1, ... % in units of channels
dicklyon@524 88 'AGC2_scales', [1, 2, 4, 6]*1.5, ... % spread more toward base
tom@516 89 'detect_scale', 0.15, ... % the desired damping range
dicklyon@523 90 'AGC_mix_coeff', 0.5);
tom@516 91 end
tom@516 92
tom@516 93 if nargin < 2
tom@516 94 CF_filter_params = struct( ...
dicklyon@523 95 'velocity_scale', 0.2, ... % for the "cubic" velocity nonlinearity
dicklyon@523 96 'v_offset', 0.01, ... % offset gives a quadratic part
dicklyon@523 97 'v2_corner', 0.2, ... % corner for essential nonlin
dicklyon@523 98 'v_damp_max', 0.01, ... % damping delta damping from velocity nonlin
dicklyon@530 99 'min_zeta', 0.10, ...
dicklyon@528 100 'first_pole_theta', 0.85*pi, ...
dicklyon@528 101 'zero_ratio', sqrt(2), ... % how far zero is above pole
dicklyon@530 102 'high_f_damping_compression', 0.5, ... % 0 to 1 to compress zeta
dicklyon@528 103 'ERB_per_step', 0.5, ... % assume G&M's ERB formula
dicklyon@528 104 'min_pole_Hz', 30 );
tom@516 105 end
tom@516 106
tom@516 107 if nargin < 1
tom@516 108 fs = 22050;
tom@516 109 end
tom@516 110
tom@516 111 % first figure out how many filter stages (PZFC/CARFAC channels):
tom@516 112 pole_Hz = CF_filter_params.first_pole_theta * fs / (2*pi);
tom@516 113 n_ch = 0;
tom@516 114 while pole_Hz > CF_filter_params.min_pole_Hz
tom@516 115 n_ch = n_ch + 1;
tom@516 116 pole_Hz = pole_Hz - CF_filter_params.ERB_per_step * ...
tom@516 117 ERB_Hz(pole_Hz, ERB_break_freq, ERB_Q);
tom@516 118 end
tom@516 119 % Now we have n_ch, the number of channels, so can make the array
tom@516 120 % and compute all the frequencies again to put into it:
tom@516 121 pole_freqs = zeros(n_ch, 1);
tom@516 122 pole_Hz = CF_filter_params.first_pole_theta * fs / (2*pi);
tom@516 123 for ch = 1:n_ch
tom@516 124 pole_freqs(ch) = pole_Hz;
tom@516 125 pole_Hz = pole_Hz - CF_filter_params.ERB_per_step * ...
tom@516 126 ERB_Hz(pole_Hz, ERB_break_freq, ERB_Q);
tom@516 127 end
tom@516 128 % now we have n_ch, the number of channels, and pole_freqs array
tom@516 129
dicklyon@528 130 max_channels_per_octave = log(2) / log(pole_freqs(1)/pole_freqs(2));
dicklyon@528 131
tom@516 132 CF = struct( ...
tom@516 133 'fs', fs, ...
dicklyon@528 134 'max_channels_per_octave', max_channels_per_octave, ...
tom@516 135 'filter_params', CF_filter_params, ...
tom@516 136 'AGC_params', CF_AGC_params, ...
tom@516 137 'IHC_params', CF_IHC_params, ...
tom@516 138 'n_ch', n_ch, ...
tom@516 139 'pole_freqs', pole_freqs, ...
tom@516 140 'filter_coeffs', CARFAC_DesignFilters(CF_filter_params, fs, pole_freqs), ...
tom@516 141 'AGC_coeffs', CARFAC_DesignAGC(CF_AGC_params, fs), ...
tom@516 142 'IHC_coeffs', CARFAC_DesignIHC(CF_IHC_params, fs), ...
tom@516 143 'n_mics', 0 );
tom@516 144
tom@516 145 % adjust the AGC_coeffs to account for IHC saturation level to get right
tom@516 146 % damping change as specified in CF.AGC_params.detect_scale
tom@516 147 CF.AGC_coeffs.detect_scale = CF.AGC_params.detect_scale / ...
tom@516 148 (CF.IHC_coeffs.saturation_output * CF.AGC_coeffs.AGC_gain);
tom@516 149
tom@516 150 %% Design the filter coeffs:
tom@516 151 function filter_coeffs = CARFAC_DesignFilters(filter_params, fs, pole_freqs)
tom@516 152
tom@516 153 n_ch = length(pole_freqs);
tom@516 154
tom@516 155 % the filter design coeffs:
tom@516 156
dicklyon@523 157 filter_coeffs = struct('velocity_scale', filter_params.velocity_scale, ...
dicklyon@523 158 'v_offset', filter_params.v_offset, ...
dicklyon@523 159 'v2_corner', filter_params.v2_corner, ...
dicklyon@523 160 'v_damp_max', filter_params.v_damp_max ...
dicklyon@523 161 );
tom@516 162
dicklyon@530 163 filter_coeffs.r1_coeffs = zeros(n_ch, 1);
dicklyon@530 164 filter_coeffs.a0_coeffs = zeros(n_ch, 1);
dicklyon@530 165 filter_coeffs.c0_coeffs = zeros(n_ch, 1);
tom@516 166 filter_coeffs.h_coeffs = zeros(n_ch, 1);
dicklyon@530 167 filter_coeffs.g0_coeffs = zeros(n_ch, 1);
tom@516 168
tom@516 169 % zero_ratio comes in via h. In book's circuit D, zero_ratio is 1/sqrt(a),
tom@516 170 % and that a is here 1 / (1+f) where h = f*c.
tom@516 171 % solve for f: 1/zero_ratio^2 = 1 / (1+f)
tom@516 172 % zero_ratio^2 = 1+f => f = zero_ratio^2 - 1
tom@516 173 f = filter_params.zero_ratio^2 - 1; % nominally 1 for half-octave
tom@516 174
tom@516 175 % Make pole positions, s and c coeffs, h and g coeffs, etc.,
tom@516 176 % which mostly depend on the pole angle theta:
tom@516 177 theta = pole_freqs .* (2 * pi / fs);
tom@516 178
dicklyon@530 179 c0 = sin(theta);
dicklyon@530 180 a0 = cos(theta);
dicklyon@530 181
tom@516 182 % different possible interpretations for min-damping r:
tom@516 183 % r = exp(-theta * CF_filter_params.min_zeta).
dicklyon@530 184 % Compress theta to give somewhat higher Q at highest thetas:
dicklyon@530 185 ff = filter_params.high_f_damping_compression; % 0 to 1; typ. 0.5
dicklyon@530 186 x = theta/pi;
dicklyon@530 187 zr_coeffs = pi * (x - ff * x.^3); % when ff is 0, this is just theta,
dicklyon@530 188 % and when ff is 1 it goes to zero at theta = pi.
dicklyon@530 189 filter_coeffs.zr_coeffs = zr_coeffs; % how r relates to zeta
dicklyon@530 190
dicklyon@530 191 r = (1 - zr_coeffs * filter_params.min_zeta);
dicklyon@530 192 filter_coeffs.r1_coeffs = r;
tom@516 193
tom@516 194 % undamped coupled-form coefficients:
dicklyon@530 195 filter_coeffs.a0_coeffs = a0;
dicklyon@530 196 filter_coeffs.c0_coeffs = c0;
tom@516 197
tom@516 198 % the zeros follow via the h_coeffs
dicklyon@530 199 h = c0 .* f;
tom@516 200 filter_coeffs.h_coeffs = h;
tom@516 201
dicklyon@530 202 % for unity gain at min damping, radius r; only used in CARFAC_Init:
dicklyon@530 203 extra_damping = zeros(size(r));
dicklyon@530 204 % this function needs to take filter_coeffs even if we haven't finished
dicklyon@530 205 % constucting it by putting in the g0_coeffs:
dicklyon@530 206 filter_coeffs.g0_coeffs = CARFAC_Stage_g(filter_coeffs, extra_damping);
tom@516 207
tom@516 208
tom@516 209 %% the AGC design coeffs:
tom@516 210 function AGC_coeffs = CARFAC_DesignAGC(AGC_params, fs)
tom@516 211
dicklyon@523 212 AGC_coeffs = struct('AGC_stage_gain', AGC_params.AGC_stage_gain);
tom@516 213
tom@516 214 % AGC1 pass is smoothing from base toward apex;
tom@516 215 % AGC2 pass is back, which is done first now
tom@516 216 AGC1_scales = AGC_params.AGC1_scales;
tom@516 217 AGC2_scales = AGC_params.AGC2_scales;
tom@516 218
tom@516 219 n_AGC_stages = AGC_params.n_stages;
tom@516 220 AGC_coeffs.AGC_epsilon = zeros(1, n_AGC_stages); % the 1/(tau*fs) roughly
dicklyon@523 221 decim = 1;
dicklyon@523 222 AGC_coeffs.decimation = AGC_params.decimation;
dicklyon@523 223
dicklyon@523 224 total_DC_gain = 0;
tom@516 225 for stage = 1:n_AGC_stages
dicklyon@525 226 tau = AGC_params.time_constants(stage); % time constant in seconds
dicklyon@525 227 decim = decim * AGC_params.decimation(stage); % net decim to this stage
tom@516 228 % epsilon is how much new input to take at each update step:
tom@516 229 AGC_coeffs.AGC_epsilon(stage) = 1 - exp(-decim / (tau * fs));
dicklyon@523 230 % effective number of smoothings in a time constant:
dicklyon@525 231 ntimes = tau * (fs / decim); % typically 5 to 50
dicklyon@524 232
dicklyon@524 233 % decide on target spread (variance) and delay (mean) of impulse
dicklyon@524 234 % response as a distribution to be convolved ntimes:
dicklyon@525 235 % TODO (dicklyon): specify spread and delay instead of scales???
dicklyon@524 236 delay = (AGC2_scales(stage) - AGC1_scales(stage)) / ntimes;
dicklyon@524 237 spread_sq = (AGC1_scales(stage)^2 + AGC2_scales(stage)^2) / ntimes;
dicklyon@524 238
dicklyon@525 239 % get pole positions to better match intended spread and delay of
dicklyon@525 240 % [[geometric distribution]] in each direction (see wikipedia)
dicklyon@524 241 u = 1 + 1 / spread_sq; % these are based on off-line algebra hacking.
dicklyon@524 242 p = u - sqrt(u^2 - 1); % pole that would give spread if used twice.
dicklyon@524 243 dp = delay * (1 - 2*p +p^2)/2;
dicklyon@524 244 polez1 = p - dp;
dicklyon@524 245 polez2 = p + dp;
dicklyon@523 246 AGC_coeffs.AGC_polez1(stage) = polez1;
dicklyon@523 247 AGC_coeffs.AGC_polez2(stage) = polez2;
dicklyon@523 248
dicklyon@525 249 % try a 3- or 5-tap FIR as an alternative to the double exponential:
dicklyon@525 250 n_taps = 0;
dicklyon@525 251 FIR_OK = 0;
dicklyon@525 252 n_iterations = 1;
dicklyon@525 253 while ~FIR_OK
dicklyon@525 254 switch n_taps
dicklyon@525 255 case 0
dicklyon@525 256 % first attempt a 3-point FIR to apply once:
dicklyon@525 257 n_taps = 3;
dicklyon@525 258 case 3
dicklyon@525 259 % second time through, go wider but stick to 1 iteration
dicklyon@525 260 n_taps = 5;
dicklyon@525 261 case 5
dicklyon@525 262 % apply FIR multiple times instead of going wider:
dicklyon@525 263 n_iterations = n_iterations + 1;
dicklyon@525 264 if n_iterations > 16
dicklyon@525 265 error('Too many n_iterations in CARFAC_DesignAGC');
dicklyon@525 266 end
dicklyon@525 267 otherwise
dicklyon@525 268 % to do other n_taps would need changes in CARFAC_Spatial_Smooth
dicklyon@525 269 % and in Design_FIR_coeffs
dicklyon@525 270 error('Bad n_taps in CARFAC_DesignAGC');
dicklyon@523 271 end
dicklyon@525 272 [AGC_spatial_FIR, FIR_OK] = Design_FIR_coeffs( ...
dicklyon@525 273 n_taps, spread_sq, delay, n_iterations);
dicklyon@523 274 end
dicklyon@525 275 % when FIR_OK, store the resulting FIR design in coeffs:
dicklyon@523 276 AGC_coeffs.AGC_spatial_iterations(stage) = n_iterations;
dicklyon@523 277 AGC_coeffs.AGC_spatial_FIR(:,stage) = AGC_spatial_FIR;
dicklyon@523 278 AGC_coeffs.AGC_n_taps(stage) = n_taps;
dicklyon@523 279
dicklyon@525 280 % accumulate DC gains from all the stages, accounting for stage_gain:
dicklyon@523 281 total_DC_gain = total_DC_gain + AGC_params.AGC_stage_gain^(stage-1);
dicklyon@523 282
dicklyon@525 283 % TODO (dicklyon) -- is this the best binaural mixing plan?
dicklyon@523 284 if stage == 1
dicklyon@523 285 AGC_coeffs.AGC_mix_coeffs(stage) = 0;
dicklyon@523 286 else
dicklyon@523 287 AGC_coeffs.AGC_mix_coeffs(stage) = AGC_params.AGC_mix_coeff / ...
dicklyon@523 288 (tau * (fs / decim));
dicklyon@523 289 end
tom@516 290 end
tom@516 291
dicklyon@524 292 AGC_coeffs.AGC_gain = total_DC_gain;
dicklyon@523 293
dicklyon@525 294 % % print some results
dicklyon@525 295 % AGC_coeffs
dicklyon@525 296 % AGC_spatial_FIR = AGC_coeffs.AGC_spatial_FIR
dicklyon@525 297
dicklyon@525 298
dicklyon@525 299 %%
dicklyon@525 300 function [FIR, OK] = Design_FIR_coeffs(n_taps, var, mn, n_iter)
dicklyon@525 301 % function [FIR, OK] = Design_FIR_coeffs(n_taps, spread_sq, delay, n_iter)
dicklyon@525 302
dicklyon@525 303 % reduce mean and variance of smoothing distribution by n_iterations:
dicklyon@525 304 mn = mn / n_iter;
dicklyon@525 305 var = var / n_iter;
dicklyon@525 306 switch n_taps
dicklyon@525 307 case 3
dicklyon@525 308 % based on solving to match mean and variance of [a, 1-a-b, b]:
dicklyon@525 309 a = (var + mn*mn - mn) / 2;
dicklyon@525 310 b = (var + mn*mn + mn) / 2;
dicklyon@525 311 FIR = [a, 1 - a - b, b];
dicklyon@525 312 OK = FIR(2) >= 0.2;
dicklyon@525 313 case 5
dicklyon@525 314 % based on solving to match [a/2, a/2, 1-a-b, b/2, b/2]:
dicklyon@525 315 a = ((var + mn*mn)*2/5 - mn*2/3) / 2;
dicklyon@525 316 b = ((var + mn*mn)*2/5 + mn*2/3) / 2;
dicklyon@525 317 % first and last coeffs are implicitly duplicated to make 5-point FIR:
dicklyon@525 318 FIR = [a/2, 1 - a - b, b/2];
dicklyon@525 319 OK = FIR(2) >= 0.1;
dicklyon@525 320 otherwise
dicklyon@525 321 error('Bad n_taps in AGC_spatial_FIR');
dicklyon@525 322 end
dicklyon@523 323
tom@516 324
tom@516 325 %% the IHC design coeffs:
tom@516 326 function IHC_coeffs = CARFAC_DesignIHC(IHC_params, fs)
tom@516 327
tom@516 328 if IHC_params.just_hwr
tom@516 329 IHC_coeffs = struct('just_hwr', 1);
tom@516 330 IHC_coeffs.saturation_output = 10; % HACK: assume some max out
tom@516 331 else
tom@516 332 if IHC_params.one_cap
tom@516 333 IHC_coeffs = struct(...
tom@516 334 'just_hwr', 0, ...
tom@516 335 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
tom@516 336 'out_rate', 1 / (IHC_params.tau_out * fs), ...
tom@516 337 'in_rate', 1 / (IHC_params.tau_in * fs), ...
tom@516 338 'one_cap', IHC_params.one_cap);
tom@516 339 else
tom@516 340 IHC_coeffs = struct(...
tom@516 341 'just_hwr', 0, ...
tom@516 342 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
tom@516 343 'out1_rate', 1 / (IHC_params.tau1_out * fs), ...
tom@516 344 'in1_rate', 1 / (IHC_params.tau1_in * fs), ...
tom@516 345 'out2_rate', 1 / (IHC_params.tau2_out * fs), ...
tom@516 346 'in2_rate', 1 / (IHC_params.tau2_in * fs), ...
tom@516 347 'one_cap', IHC_params.one_cap);
tom@516 348 end
tom@516 349
tom@516 350 % run one channel to convergence to get rest state:
tom@516 351 IHC_coeffs.rest_output = 0;
tom@516 352 IHC_state = struct( ...
tom@516 353 'cap_voltage', 0, ...
tom@516 354 'cap1_voltage', 0, ...
tom@516 355 'cap2_voltage', 0, ...
tom@516 356 'lpf1_state', 0, ...
tom@516 357 'lpf2_state', 0, ...
tom@516 358 'ihc_accum', 0);
tom@516 359
tom@516 360 IHC_in = 0;
tom@516 361 for k = 1:30000
tom@516 362 [IHC_out, IHC_state] = CARFAC_IHCStep(IHC_in, IHC_coeffs, IHC_state);
tom@516 363 end
tom@516 364
tom@516 365 IHC_coeffs.rest_output = IHC_out;
tom@516 366 IHC_coeffs.rest_cap = IHC_state.cap_voltage;
tom@516 367 IHC_coeffs.rest_cap1 = IHC_state.cap1_voltage;
tom@516 368 IHC_coeffs.rest_cap2 = IHC_state.cap2_voltage;
tom@516 369
tom@516 370 LARGE = 2;
tom@516 371 IHC_in = LARGE; % "Large" saturating input to IHC; make it alternate
tom@516 372 for k = 1:30000
tom@516 373 [IHC_out, IHC_state] = CARFAC_IHCStep(IHC_in, IHC_coeffs, IHC_state);
tom@516 374 prev_IHC_out = IHC_out;
tom@516 375 IHC_in = -IHC_in;
tom@516 376 end
tom@516 377
tom@516 378 IHC_coeffs.saturation_output = (IHC_out + prev_IHC_out) / 2;
tom@516 379 end
tom@516 380
tom@516 381 %%
tom@516 382 % default design result, running this function with no args, should look
tom@516 383 % like this, before CARFAC_Init puts state storage into it:
tom@516 384 %
dicklyon@523 385 %
tom@516 386 % CF = CARFAC_Design
tom@516 387 % CF.filter_params
tom@516 388 % CF.AGC_params
tom@516 389 % CF.filter_coeffs
tom@516 390 % CF.AGC_coeffs
tom@516 391 % CF.IHC_coeffs
tom@516 392 %
dicklyon@530 393 % CF =
dicklyon@530 394 % fs: 22050
dicklyon@530 395 % max_channels_per_octave: 12.1873
dicklyon@530 396 % filter_params: [1x1 struct]
dicklyon@530 397 % AGC_params: [1x1 struct]
dicklyon@530 398 % IHC_params: [1x1 struct]
dicklyon@530 399 % n_ch: 66
dicklyon@530 400 % pole_freqs: [66x1 double]
dicklyon@530 401 % filter_coeffs: [1x1 struct]
dicklyon@530 402 % AGC_coeffs: [1x1 struct]
dicklyon@530 403 % IHC_coeffs: [1x1 struct]
dicklyon@530 404 % n_mics: 0
dicklyon@530 405 % ans =
dicklyon@530 406 % velocity_scale: 0.2000
dicklyon@530 407 % v_offset: 0.0100
dicklyon@530 408 % v2_corner: 0.2000
dicklyon@530 409 % v_damp_max: 0.0100
dicklyon@530 410 % min_zeta: 0.1200
dicklyon@530 411 % first_pole_theta: 2.6704
dicklyon@530 412 % zero_ratio: 1.4142
dicklyon@530 413 % high_f_damping_compression: 0.5000
dicklyon@530 414 % ERB_per_step: 0.5000
dicklyon@530 415 % min_pole_Hz: 30
dicklyon@530 416 % ans =
tom@516 417 % n_stages: 4
tom@516 418 % time_constants: [0.0020 0.0080 0.0320 0.1280]
tom@516 419 % AGC_stage_gain: 2
dicklyon@523 420 % decimation: [8 2 2 2]
dicklyon@530 421 % AGC1_scales: [1 2 4 6]
dicklyon@530 422 % AGC2_scales: [1.5000 3 6 9]
tom@516 423 % detect_scale: 0.1500
dicklyon@530 424 % AGC_mix_coeff: 0.5000
dicklyon@530 425 % ans =
tom@516 426 % velocity_scale: 0.2000
dicklyon@523 427 % v_offset: 0.0100
dicklyon@523 428 % v2_corner: 0.2000
dicklyon@523 429 % v_damp_max: 0.0100
dicklyon@530 430 % r1_coeffs: [66x1 double]
dicklyon@530 431 % a0_coeffs: [66x1 double]
dicklyon@530 432 % c0_coeffs: [66x1 double]
dicklyon@530 433 % h_coeffs: [66x1 double]
dicklyon@530 434 % g0_coeffs: [66x1 double]
dicklyon@530 435 % zr_coeffs: [66x1 double]
dicklyon@530 436 % ans =
dicklyon@523 437 % AGC_stage_gain: 2
dicklyon@523 438 % AGC_epsilon: [0.1659 0.0867 0.0443 0.0224]
dicklyon@523 439 % decimation: [8 2 2 2]
dicklyon@530 440 % AGC_polez1: [0.1627 0.2713 0.3944 0.4194]
dicklyon@530 441 % AGC_polez2: [0.2219 0.3165 0.4260 0.4414]
dicklyon@530 442 % AGC_spatial_iterations: [1 1 2 2]
dicklyon@523 443 % AGC_spatial_FIR: [3x4 double]
dicklyon@523 444 % AGC_n_taps: [3 5 5 5]
dicklyon@530 445 % AGC_mix_coeffs: [0 0.0454 0.0227 0.0113]
dicklyon@523 446 % AGC_gain: 15
dicklyon@523 447 % detect_scale: 0.0664
dicklyon@530 448 % ans =
dicklyon@523 449 % just_hwr: 0
tom@516 450 % lpf_coeff: 0.4327
tom@516 451 % out1_rate: 0.0023
tom@516 452 % in1_rate: 0.0023
tom@516 453 % out2_rate: 0.0091
tom@516 454 % in2_rate: 0.0091
tom@516 455 % one_cap: 0
tom@516 456 % rest_output: 0.0365
tom@516 457 % rest_cap: 0
tom@516 458 % rest_cap1: 0.9635
tom@516 459 % rest_cap2: 0.9269
dicklyon@523 460 % saturation_output: 0.1507
tom@516 461