tom@516
|
1 % Copyright 2012, Google, Inc.
|
tom@516
|
2 % Author: Richard F. Lyon
|
tom@516
|
3 %
|
tom@516
|
4 % This Matlab file is part of an implementation of Lyon's cochlear model:
|
tom@516
|
5 % "Cascade of Asymmetric Resonators with Fast-Acting Compression"
|
tom@516
|
6 % to supplement Lyon's upcoming book "Human and Machine Hearing"
|
tom@516
|
7 %
|
tom@516
|
8 % Licensed under the Apache License, Version 2.0 (the "License");
|
tom@516
|
9 % you may not use this file except in compliance with the License.
|
tom@516
|
10 % You may obtain a copy of the License at
|
tom@516
|
11 %
|
tom@516
|
12 % http://www.apache.org/licenses/LICENSE-2.0
|
tom@516
|
13 %
|
tom@516
|
14 % Unless required by applicable law or agreed to in writing, software
|
tom@516
|
15 % distributed under the License is distributed on an "AS IS" BASIS,
|
tom@516
|
16 % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
tom@516
|
17 % See the License for the specific language governing permissions and
|
tom@516
|
18 % limitations under the License.
|
tom@516
|
19
|
tom@516
|
20 function CF = CARFAC_Design(fs, CF_filter_params, ...
|
tom@516
|
21 CF_AGC_params, ERB_break_freq, ERB_Q, CF_IHC_params)
|
tom@516
|
22 % function CF = CARFAC_Design(fs, CF_filter_params, ...
|
tom@516
|
23 % CF_AGC_params, ERB_break_freq, ERB_Q, CF_IHC_params)
|
tom@516
|
24 %
|
tom@516
|
25 % This function designs the CARFAC (Cascade of Asymmetric Resonators with
|
tom@516
|
26 % Fast-Acting Compression); that is, it take bundles of parameters and
|
tom@516
|
27 % computes all the filter coefficients needed to run it.
|
tom@516
|
28 %
|
tom@516
|
29 % fs is sample rate (per second)
|
tom@516
|
30 % CF_filter_params bundles all the pole-zero filter cascade parameters
|
tom@516
|
31 % CF_AGC_params bundles all the automatic gain control parameters
|
tom@516
|
32 % CF_IHC_params bundles all the inner hair cell parameters
|
tom@516
|
33 %
|
tom@516
|
34 % See other functions for designing and characterizing the CARFAC:
|
tom@516
|
35 % [naps, CF] = CARFAC_Run(CF, input_waves)
|
tom@516
|
36 % transfns = CARFAC_Transfer_Functions(CF, to_channels, from_channels)
|
tom@516
|
37 %
|
tom@516
|
38 % Defaults to Glasberg & Moore's ERB curve:
|
tom@516
|
39 % ERB_break_freq = 1000/4.37; % 228.833
|
tom@516
|
40 % ERB_Q = 1000/(24.7*4.37); % 9.2645
|
tom@516
|
41 %
|
tom@516
|
42 % All args are defaultable; for sample/default args see the code; they
|
tom@516
|
43 % make 96 channels at default fs = 22050, 114 channels at 44100.
|
tom@516
|
44
|
tom@516
|
45 if nargin < 6
|
tom@516
|
46 % HACK: these constant control the defaults
|
tom@516
|
47 one_cap = 0; % bool; 0 for new two-cap hack
|
tom@516
|
48 just_hwr = 0; % book; 0 for normal/fancy IHC; 1 for HWR
|
tom@516
|
49 if just_hwr
|
tom@516
|
50 CF_IHC_params = struct('just_hwr', 1); % just a simple HWR
|
tom@516
|
51 else
|
tom@516
|
52 if one_cap
|
tom@516
|
53 CF_IHC_params = struct( ...
|
dicklyon@523
|
54 'just_hwr', just_hwr, ... % not just a simple HWR
|
tom@516
|
55 'one_cap', one_cap, ... % bool; 0 for new two-cap hack
|
tom@516
|
56 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
|
tom@516
|
57 'tau_out', 0.0005, ... % depletion tau is pretty fast
|
tom@516
|
58 'tau_in', 0.010 ); % recovery tau is slower
|
tom@516
|
59 else
|
tom@516
|
60 CF_IHC_params = struct( ...
|
dicklyon@523
|
61 'just_hwr', just_hwr, ... % not just a simple HWR
|
tom@516
|
62 'one_cap', one_cap, ... % bool; 0 for new two-cap hack
|
tom@516
|
63 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
|
tom@516
|
64 'tau1_out', 0.020, ... % depletion tau is pretty fast
|
tom@516
|
65 'tau1_in', 0.020, ... % recovery tau is slower
|
tom@516
|
66 'tau2_out', 0.005, ... % depletion tau is pretty fast
|
tom@516
|
67 'tau2_in', 0.005 ); % recovery tau is slower
|
tom@516
|
68 end
|
tom@516
|
69 end
|
tom@516
|
70 end
|
tom@516
|
71
|
tom@516
|
72 if nargin < 5
|
tom@516
|
73 % Ref: Glasberg and Moore: Hearing Research, 47 (1990), 103-138
|
tom@516
|
74 % ERB = 24.7 * (1 + 4.37 * CF_Hz / 1000);
|
tom@516
|
75 ERB_Q = 1000/(24.7*4.37); % 9.2645
|
tom@516
|
76 if nargin < 4
|
tom@516
|
77 ERB_break_freq = 1000/4.37; % 228.833
|
tom@516
|
78 end
|
tom@516
|
79 end
|
tom@516
|
80
|
tom@516
|
81 if nargin < 3
|
tom@516
|
82 CF_AGC_params = struct( ...
|
tom@516
|
83 'n_stages', 4, ...
|
tom@516
|
84 'time_constants', [1, 4, 16, 64]*0.002, ...
|
tom@516
|
85 'AGC_stage_gain', 2, ... % gain from each stage to next slower stage
|
dicklyon@523
|
86 'decimation', [8, 2, 2, 2], ... % how often to update the AGC states
|
dicklyon@524
|
87 'AGC1_scales', [1, 2, 4, 6]*1, ... % in units of channels
|
dicklyon@524
|
88 'AGC2_scales', [1, 2, 4, 6]*1.5, ... % spread more toward base
|
tom@516
|
89 'detect_scale', 0.15, ... % the desired damping range
|
dicklyon@523
|
90 'AGC_mix_coeff', 0.5);
|
tom@516
|
91 end
|
tom@516
|
92
|
tom@516
|
93 if nargin < 2
|
tom@516
|
94 CF_filter_params = struct( ...
|
dicklyon@523
|
95 'velocity_scale', 0.2, ... % for the "cubic" velocity nonlinearity
|
dicklyon@523
|
96 'v_offset', 0.01, ... % offset gives a quadratic part
|
dicklyon@523
|
97 'v2_corner', 0.2, ... % corner for essential nonlin
|
dicklyon@523
|
98 'v_damp_max', 0.01, ... % damping delta damping from velocity nonlin
|
tom@516
|
99 'min_zeta', 0.12, ...
|
tom@516
|
100 'first_pole_theta', 0.78*pi, ...
|
tom@516
|
101 'zero_ratio', sqrt(2), ...
|
tom@516
|
102 'ERB_per_step', 0.3333, ... % assume G&M's ERB formula
|
tom@516
|
103 'min_pole_Hz', 40 );
|
tom@516
|
104 end
|
tom@516
|
105
|
tom@516
|
106 if nargin < 1
|
tom@516
|
107 fs = 22050;
|
tom@516
|
108 end
|
tom@516
|
109
|
tom@516
|
110 % first figure out how many filter stages (PZFC/CARFAC channels):
|
tom@516
|
111 pole_Hz = CF_filter_params.first_pole_theta * fs / (2*pi);
|
tom@516
|
112 n_ch = 0;
|
tom@516
|
113 while pole_Hz > CF_filter_params.min_pole_Hz
|
tom@516
|
114 n_ch = n_ch + 1;
|
tom@516
|
115 pole_Hz = pole_Hz - CF_filter_params.ERB_per_step * ...
|
tom@516
|
116 ERB_Hz(pole_Hz, ERB_break_freq, ERB_Q);
|
tom@516
|
117 end
|
tom@516
|
118 % Now we have n_ch, the number of channels, so can make the array
|
tom@516
|
119 % and compute all the frequencies again to put into it:
|
tom@516
|
120 pole_freqs = zeros(n_ch, 1);
|
tom@516
|
121 pole_Hz = CF_filter_params.first_pole_theta * fs / (2*pi);
|
tom@516
|
122 for ch = 1:n_ch
|
tom@516
|
123 pole_freqs(ch) = pole_Hz;
|
tom@516
|
124 pole_Hz = pole_Hz - CF_filter_params.ERB_per_step * ...
|
tom@516
|
125 ERB_Hz(pole_Hz, ERB_break_freq, ERB_Q);
|
tom@516
|
126 end
|
tom@516
|
127 % now we have n_ch, the number of channels, and pole_freqs array
|
tom@516
|
128
|
tom@516
|
129 CF = struct( ...
|
tom@516
|
130 'fs', fs, ...
|
tom@516
|
131 'filter_params', CF_filter_params, ...
|
tom@516
|
132 'AGC_params', CF_AGC_params, ...
|
tom@516
|
133 'IHC_params', CF_IHC_params, ...
|
tom@516
|
134 'n_ch', n_ch, ...
|
tom@516
|
135 'pole_freqs', pole_freqs, ...
|
tom@516
|
136 'filter_coeffs', CARFAC_DesignFilters(CF_filter_params, fs, pole_freqs), ...
|
tom@516
|
137 'AGC_coeffs', CARFAC_DesignAGC(CF_AGC_params, fs), ...
|
tom@516
|
138 'IHC_coeffs', CARFAC_DesignIHC(CF_IHC_params, fs), ...
|
tom@516
|
139 'n_mics', 0 );
|
tom@516
|
140
|
tom@516
|
141 % adjust the AGC_coeffs to account for IHC saturation level to get right
|
tom@516
|
142 % damping change as specified in CF.AGC_params.detect_scale
|
tom@516
|
143 CF.AGC_coeffs.detect_scale = CF.AGC_params.detect_scale / ...
|
tom@516
|
144 (CF.IHC_coeffs.saturation_output * CF.AGC_coeffs.AGC_gain);
|
tom@516
|
145
|
tom@516
|
146 %% Design the filter coeffs:
|
tom@516
|
147 function filter_coeffs = CARFAC_DesignFilters(filter_params, fs, pole_freqs)
|
tom@516
|
148
|
tom@516
|
149 n_ch = length(pole_freqs);
|
tom@516
|
150
|
tom@516
|
151 % the filter design coeffs:
|
tom@516
|
152
|
dicklyon@523
|
153 filter_coeffs = struct('velocity_scale', filter_params.velocity_scale, ...
|
dicklyon@523
|
154 'v_offset', filter_params.v_offset, ...
|
dicklyon@523
|
155 'v2_corner', filter_params.v2_corner, ...
|
dicklyon@523
|
156 'v_damp_max', filter_params.v_damp_max ...
|
dicklyon@523
|
157 );
|
tom@516
|
158
|
tom@516
|
159 filter_coeffs.r_coeffs = zeros(n_ch, 1);
|
tom@516
|
160 filter_coeffs.a_coeffs = zeros(n_ch, 1);
|
tom@516
|
161 filter_coeffs.c_coeffs = zeros(n_ch, 1);
|
tom@516
|
162 filter_coeffs.h_coeffs = zeros(n_ch, 1);
|
tom@516
|
163 filter_coeffs.g_coeffs = zeros(n_ch, 1);
|
tom@516
|
164
|
tom@516
|
165 % zero_ratio comes in via h. In book's circuit D, zero_ratio is 1/sqrt(a),
|
tom@516
|
166 % and that a is here 1 / (1+f) where h = f*c.
|
tom@516
|
167 % solve for f: 1/zero_ratio^2 = 1 / (1+f)
|
tom@516
|
168 % zero_ratio^2 = 1+f => f = zero_ratio^2 - 1
|
tom@516
|
169 f = filter_params.zero_ratio^2 - 1; % nominally 1 for half-octave
|
tom@516
|
170
|
tom@516
|
171 % Make pole positions, s and c coeffs, h and g coeffs, etc.,
|
tom@516
|
172 % which mostly depend on the pole angle theta:
|
tom@516
|
173 theta = pole_freqs .* (2 * pi / fs);
|
tom@516
|
174
|
tom@516
|
175 % different possible interpretations for min-damping r:
|
tom@516
|
176 % r = exp(-theta * CF_filter_params.min_zeta).
|
tom@516
|
177 % Using sin gives somewhat higher Q at highest thetas.
|
tom@516
|
178 r = (1 - sin(theta) * filter_params.min_zeta);
|
tom@516
|
179 filter_coeffs.r_coeffs = r;
|
tom@516
|
180
|
tom@516
|
181 % undamped coupled-form coefficients:
|
tom@516
|
182 filter_coeffs.a_coeffs = cos(theta);
|
tom@516
|
183 filter_coeffs.c_coeffs = sin(theta);
|
tom@516
|
184
|
tom@516
|
185 % the zeros follow via the h_coeffs
|
tom@516
|
186 h = sin(theta) .* f;
|
tom@516
|
187 filter_coeffs.h_coeffs = h;
|
tom@516
|
188
|
dicklyon@524
|
189 % unity gain at min damping, radius r:
|
dicklyon@524
|
190 filter_coeffs.g_coeffs = (1 - 2*r.*cos(theta) + r.^2) ./ ...
|
dicklyon@524
|
191 (1 - 2*r .* cos(theta) + h .* r .* sin(theta) + r.^2);
|
tom@516
|
192
|
tom@516
|
193
|
tom@516
|
194 %% the AGC design coeffs:
|
tom@516
|
195 function AGC_coeffs = CARFAC_DesignAGC(AGC_params, fs)
|
tom@516
|
196
|
dicklyon@523
|
197 AGC_coeffs = struct('AGC_stage_gain', AGC_params.AGC_stage_gain);
|
tom@516
|
198
|
tom@516
|
199 % AGC1 pass is smoothing from base toward apex;
|
tom@516
|
200 % AGC2 pass is back, which is done first now
|
tom@516
|
201 AGC1_scales = AGC_params.AGC1_scales;
|
tom@516
|
202 AGC2_scales = AGC_params.AGC2_scales;
|
tom@516
|
203
|
tom@516
|
204 n_AGC_stages = AGC_params.n_stages;
|
tom@516
|
205 AGC_coeffs.AGC_epsilon = zeros(1, n_AGC_stages); % the 1/(tau*fs) roughly
|
dicklyon@523
|
206 decim = 1;
|
dicklyon@523
|
207 AGC_coeffs.decimation = AGC_params.decimation;
|
dicklyon@523
|
208
|
dicklyon@523
|
209 total_DC_gain = 0;
|
tom@516
|
210 for stage = 1:n_AGC_stages
|
tom@516
|
211 tau = AGC_params.time_constants(stage);
|
dicklyon@523
|
212 decim = decim * AGC_params.decimation(stage);
|
tom@516
|
213 % epsilon is how much new input to take at each update step:
|
tom@516
|
214 AGC_coeffs.AGC_epsilon(stage) = 1 - exp(-decim / (tau * fs));
|
tom@516
|
215 % and these are the smoothing scales and poles for decimated rate:
|
dicklyon@523
|
216
|
dicklyon@523
|
217 n_iterations = 1; % how many times to apply smoothing filter in a stage
|
dicklyon@523
|
218 % effective number of smoothings in a time constant:
|
dicklyon@524
|
219 ntimes = n_iterations * tau * (fs / decim);
|
dicklyon@524
|
220
|
dicklyon@524
|
221 % decide on target spread (variance) and delay (mean) of impulse
|
dicklyon@524
|
222 % response as a distribution to be convolved ntimes:
|
dicklyon@524
|
223 delay = (AGC2_scales(stage) - AGC1_scales(stage)) / ntimes;
|
dicklyon@524
|
224 spread_sq = (AGC1_scales(stage)^2 + AGC2_scales(stage)^2) / ntimes;
|
dicklyon@524
|
225
|
dicklyon@524
|
226 % get pole positions to better match intended spread and delay:
|
dicklyon@524
|
227 u = 1 + 1 / spread_sq; % these are based on off-line algebra hacking.
|
dicklyon@524
|
228 p = u - sqrt(u^2 - 1); % pole that would give spread if used twice.
|
dicklyon@524
|
229 dp = delay * (1 - 2*p +p^2)/2;
|
dicklyon@524
|
230 polez1 = p - dp;
|
dicklyon@524
|
231 polez2 = p + dp;
|
dicklyon@523
|
232 AGC_coeffs.AGC_polez1(stage) = polez1;
|
dicklyon@523
|
233 AGC_coeffs.AGC_polez2(stage) = polez2;
|
dicklyon@523
|
234
|
dicklyon@524
|
235 % from [[Geometric distribution]] mean and variance from wikipedia,
|
dicklyon@524
|
236 % to verify that we got what we intended, very nearly, and make the
|
dicklyon@524
|
237 % FIR version to match the poles version:
|
dicklyon@524
|
238 % delay = polez2/(1-polez2) - polez1/(1-polez1);
|
dicklyon@524
|
239 % spread_sq = polez1/(1-polez1)^2 + polez2/(1-polez2)^2;
|
dicklyon@523
|
240
|
dicklyon@523
|
241 % try a 3-tap FIR as an alternative:
|
dicklyon@523
|
242 n_taps = 3;
|
dicklyon@523
|
243 a = (spread_sq + delay*delay - delay) / 2;
|
dicklyon@523
|
244 b = (spread_sq + delay*delay + delay) / 2;
|
dicklyon@523
|
245 AGC_spatial_FIR = [a, 1 - a - b, b]; % stored as 5 taps
|
dicklyon@523
|
246 done = AGC_spatial_FIR(2) > 0.1; % not OK if center tap is too low
|
dicklyon@523
|
247 % if 1 iteration is not good with 3 taps go to 5 taps, then more
|
dicklyon@524
|
248 % iterations if needed, and maybe fall back to double-exponential IIR:
|
dicklyon@524
|
249 spread_sq1 = spread_sq; % keep this as 1-iteration spread reference...
|
dicklyon@524
|
250 delay1 = delay; % keep this as 1-iteration delay reference...
|
dicklyon@523
|
251 while ~done % smoothing condition, middle value
|
dicklyon@523
|
252 if n_taps == 3
|
dicklyon@523
|
253 % first time through, go wider but stick to 1 iteration
|
dicklyon@523
|
254 n_taps = 5;
|
dicklyon@523
|
255 n_iterations = 1;
|
dicklyon@523
|
256 else
|
dicklyon@523
|
257 % already at 5 taps, so just increase iterations
|
dicklyon@523
|
258 n_iterations = n_iterations + 1; % number of times to apply spatial
|
dicklyon@523
|
259 end
|
dicklyon@524
|
260 spread_sq = spread_sq1 / n_iterations;
|
dicklyon@524
|
261 delay = delay1 / n_iterations;
|
dicklyon@523
|
262 % 5-tap design duplicates the a and b coeffs; stores just 3 coeffs:
|
dicklyon@523
|
263 % a and b from their sum and diff as before: (sum \pm diff) / 2:
|
dicklyon@523
|
264 a = ((spread_sq + delay*delay)*2/5 - delay*2/3) / 2;
|
dicklyon@523
|
265 b = ((spread_sq + delay*delay)*2/5 + delay*2/3) / 2;
|
dicklyon@523
|
266 AGC_spatial_FIR = [a/2, 1 - a - b, b/2]; % implicit dup of a and b
|
dicklyon@523
|
267 done = AGC_spatial_FIR(2) > 0.1;
|
dicklyon@523
|
268 end
|
dicklyon@523
|
269 % store the resulting FIR design in coeffs:
|
dicklyon@523
|
270 AGC_coeffs.AGC_spatial_iterations(stage) = n_iterations;
|
dicklyon@523
|
271 AGC_coeffs.AGC_spatial_FIR(:,stage) = AGC_spatial_FIR;
|
dicklyon@523
|
272 AGC_coeffs.AGC_n_taps(stage) = n_taps;
|
dicklyon@523
|
273
|
dicklyon@523
|
274 total_DC_gain = total_DC_gain + AGC_params.AGC_stage_gain^(stage-1);
|
dicklyon@523
|
275
|
dicklyon@523
|
276 % TODO (dicklyon) -- is this what we want?
|
dicklyon@523
|
277 if stage == 1
|
dicklyon@523
|
278 AGC_coeffs.AGC_mix_coeffs(stage) = 0;
|
dicklyon@523
|
279 else
|
dicklyon@523
|
280 AGC_coeffs.AGC_mix_coeffs(stage) = AGC_params.AGC_mix_coeff / ...
|
dicklyon@523
|
281 (tau * (fs / decim));
|
dicklyon@523
|
282 end
|
tom@516
|
283 end
|
tom@516
|
284
|
dicklyon@524
|
285 AGC_coeffs.AGC_gain = total_DC_gain;
|
dicklyon@523
|
286
|
dicklyon@524
|
287 % print some results
|
dicklyon@524
|
288 AGC_coeffs
|
dicklyon@524
|
289 AGC_spatial_FIR = AGC_coeffs.AGC_spatial_FIR
|
dicklyon@523
|
290
|
tom@516
|
291
|
tom@516
|
292 %% the IHC design coeffs:
|
tom@516
|
293 function IHC_coeffs = CARFAC_DesignIHC(IHC_params, fs)
|
tom@516
|
294
|
tom@516
|
295 if IHC_params.just_hwr
|
tom@516
|
296 IHC_coeffs = struct('just_hwr', 1);
|
tom@516
|
297 IHC_coeffs.saturation_output = 10; % HACK: assume some max out
|
tom@516
|
298 else
|
tom@516
|
299 if IHC_params.one_cap
|
tom@516
|
300 IHC_coeffs = struct(...
|
tom@516
|
301 'just_hwr', 0, ...
|
tom@516
|
302 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
|
tom@516
|
303 'out_rate', 1 / (IHC_params.tau_out * fs), ...
|
tom@516
|
304 'in_rate', 1 / (IHC_params.tau_in * fs), ...
|
tom@516
|
305 'one_cap', IHC_params.one_cap);
|
tom@516
|
306 else
|
tom@516
|
307 IHC_coeffs = struct(...
|
tom@516
|
308 'just_hwr', 0, ...
|
tom@516
|
309 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
|
tom@516
|
310 'out1_rate', 1 / (IHC_params.tau1_out * fs), ...
|
tom@516
|
311 'in1_rate', 1 / (IHC_params.tau1_in * fs), ...
|
tom@516
|
312 'out2_rate', 1 / (IHC_params.tau2_out * fs), ...
|
tom@516
|
313 'in2_rate', 1 / (IHC_params.tau2_in * fs), ...
|
tom@516
|
314 'one_cap', IHC_params.one_cap);
|
tom@516
|
315 end
|
tom@516
|
316
|
tom@516
|
317 % run one channel to convergence to get rest state:
|
tom@516
|
318 IHC_coeffs.rest_output = 0;
|
tom@516
|
319 IHC_state = struct( ...
|
tom@516
|
320 'cap_voltage', 0, ...
|
tom@516
|
321 'cap1_voltage', 0, ...
|
tom@516
|
322 'cap2_voltage', 0, ...
|
tom@516
|
323 'lpf1_state', 0, ...
|
tom@516
|
324 'lpf2_state', 0, ...
|
tom@516
|
325 'ihc_accum', 0);
|
tom@516
|
326
|
tom@516
|
327 IHC_in = 0;
|
tom@516
|
328 for k = 1:30000
|
tom@516
|
329 [IHC_out, IHC_state] = CARFAC_IHCStep(IHC_in, IHC_coeffs, IHC_state);
|
tom@516
|
330 end
|
tom@516
|
331
|
tom@516
|
332 IHC_coeffs.rest_output = IHC_out;
|
tom@516
|
333 IHC_coeffs.rest_cap = IHC_state.cap_voltage;
|
tom@516
|
334 IHC_coeffs.rest_cap1 = IHC_state.cap1_voltage;
|
tom@516
|
335 IHC_coeffs.rest_cap2 = IHC_state.cap2_voltage;
|
tom@516
|
336
|
tom@516
|
337 LARGE = 2;
|
tom@516
|
338 IHC_in = LARGE; % "Large" saturating input to IHC; make it alternate
|
tom@516
|
339 for k = 1:30000
|
tom@516
|
340 [IHC_out, IHC_state] = CARFAC_IHCStep(IHC_in, IHC_coeffs, IHC_state);
|
tom@516
|
341 prev_IHC_out = IHC_out;
|
tom@516
|
342 IHC_in = -IHC_in;
|
tom@516
|
343 end
|
tom@516
|
344
|
tom@516
|
345 IHC_coeffs.saturation_output = (IHC_out + prev_IHC_out) / 2;
|
tom@516
|
346 end
|
tom@516
|
347
|
tom@516
|
348 %%
|
tom@516
|
349 % default design result, running this function with no args, should look
|
tom@516
|
350 % like this, before CARFAC_Init puts state storage into it:
|
tom@516
|
351 %
|
dicklyon@523
|
352 %
|
tom@516
|
353 % CF = CARFAC_Design
|
tom@516
|
354 % CF.filter_params
|
tom@516
|
355 % CF.AGC_params
|
tom@516
|
356 % CF.filter_coeffs
|
tom@516
|
357 % CF.AGC_coeffs
|
tom@516
|
358 % CF.IHC_coeffs
|
tom@516
|
359 %
|
tom@516
|
360 % CF =
|
tom@516
|
361 % fs: 22050
|
tom@516
|
362 % filter_params: [1x1 struct]
|
tom@516
|
363 % AGC_params: [1x1 struct]
|
tom@516
|
364 % IHC_params: [1x1 struct]
|
tom@516
|
365 % n_ch: 96
|
tom@516
|
366 % pole_freqs: [96x1 double]
|
tom@516
|
367 % filter_coeffs: [1x1 struct]
|
tom@516
|
368 % AGC_coeffs: [1x1 struct]
|
tom@516
|
369 % IHC_coeffs: [1x1 struct]
|
tom@516
|
370 % n_mics: 0
|
tom@516
|
371 % ans =
|
tom@516
|
372 % velocity_scale: 0.2000
|
dicklyon@523
|
373 % v_offset: 0.0100
|
dicklyon@523
|
374 % v2_corner: 0.2000
|
dicklyon@523
|
375 % v_damp_max: 0.0100
|
tom@516
|
376 % min_zeta: 0.1200
|
tom@516
|
377 % first_pole_theta: 2.4504
|
tom@516
|
378 % zero_ratio: 1.4142
|
tom@516
|
379 % ERB_per_step: 0.3333
|
tom@516
|
380 % min_pole_Hz: 40
|
tom@516
|
381 % ans =
|
tom@516
|
382 % n_stages: 4
|
tom@516
|
383 % time_constants: [0.0020 0.0080 0.0320 0.1280]
|
tom@516
|
384 % AGC_stage_gain: 2
|
dicklyon@523
|
385 % decimation: [8 2 2 2]
|
dicklyon@523
|
386 % AGC1_scales: [1 2 4 8]
|
dicklyon@523
|
387 % AGC2_scales: [1.5000 3 6 12]
|
tom@516
|
388 % detect_scale: 0.1500
|
dicklyon@523
|
389 % AGC_mix_coeff: 0.3500
|
tom@516
|
390 % ans =
|
tom@516
|
391 % velocity_scale: 0.2000
|
dicklyon@523
|
392 % v_offset: 0.0100
|
dicklyon@523
|
393 % v2_corner: 0.2000
|
dicklyon@523
|
394 % v_damp_max: 0.0100
|
tom@516
|
395 % r_coeffs: [96x1 double]
|
tom@516
|
396 % a_coeffs: [96x1 double]
|
tom@516
|
397 % c_coeffs: [96x1 double]
|
tom@516
|
398 % h_coeffs: [96x1 double]
|
tom@516
|
399 % g_coeffs: [96x1 double]
|
tom@516
|
400 % ans =
|
dicklyon@523
|
401 % AGC_stage_gain: 2
|
dicklyon@523
|
402 % AGC_epsilon: [0.1659 0.0867 0.0443 0.0224]
|
dicklyon@523
|
403 % decimation: [8 2 2 2]
|
dicklyon@523
|
404 % AGC_spatial_iterations: [1 1 2 3]
|
dicklyon@523
|
405 % AGC_spatial_FIR: [3x4 double]
|
dicklyon@523
|
406 % AGC_n_taps: [3 5 5 5]
|
dicklyon@523
|
407 % AGC_mix_coeffs: [0 0.0317 0.0159 0.0079]
|
dicklyon@523
|
408 % AGC_gain: 15
|
dicklyon@523
|
409 % detect_scale: 0.0664
|
tom@516
|
410 % ans =
|
dicklyon@523
|
411 % just_hwr: 0
|
tom@516
|
412 % lpf_coeff: 0.4327
|
tom@516
|
413 % out1_rate: 0.0023
|
tom@516
|
414 % in1_rate: 0.0023
|
tom@516
|
415 % out2_rate: 0.0091
|
tom@516
|
416 % in2_rate: 0.0091
|
tom@516
|
417 % one_cap: 0
|
tom@516
|
418 % rest_output: 0.0365
|
tom@516
|
419 % rest_cap: 0
|
tom@516
|
420 % rest_cap1: 0.9635
|
tom@516
|
421 % rest_cap2: 0.9269
|
dicklyon@523
|
422 % saturation_output: 0.1507
|
tom@516
|
423
|
tom@516
|
424
|
tom@516
|
425
|