annotate trunk/matlab/bmm/carfac/CARFAC_Design.m @ 516:68c15d43fcc8

Added MATLAB code for Lyon's CAR-FAC filter cascade.
author tom@acousticscale.org
date Wed, 15 Feb 2012 21:26:40 +0000
parents
children 2b96cb7ea4f7
rev   line source
tom@516 1 % Copyright 2012, Google, Inc.
tom@516 2 % Author: Richard F. Lyon
tom@516 3 %
tom@516 4 % This Matlab file is part of an implementation of Lyon's cochlear model:
tom@516 5 % "Cascade of Asymmetric Resonators with Fast-Acting Compression"
tom@516 6 % to supplement Lyon's upcoming book "Human and Machine Hearing"
tom@516 7 %
tom@516 8 % Licensed under the Apache License, Version 2.0 (the "License");
tom@516 9 % you may not use this file except in compliance with the License.
tom@516 10 % You may obtain a copy of the License at
tom@516 11 %
tom@516 12 % http://www.apache.org/licenses/LICENSE-2.0
tom@516 13 %
tom@516 14 % Unless required by applicable law or agreed to in writing, software
tom@516 15 % distributed under the License is distributed on an "AS IS" BASIS,
tom@516 16 % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
tom@516 17 % See the License for the specific language governing permissions and
tom@516 18 % limitations under the License.
tom@516 19
tom@516 20 function CF = CARFAC_Design(fs, CF_filter_params, ...
tom@516 21 CF_AGC_params, ERB_break_freq, ERB_Q, CF_IHC_params)
tom@516 22 % function CF = CARFAC_Design(fs, CF_filter_params, ...
tom@516 23 % CF_AGC_params, ERB_break_freq, ERB_Q, CF_IHC_params)
tom@516 24 %
tom@516 25 % This function designs the CARFAC (Cascade of Asymmetric Resonators with
tom@516 26 % Fast-Acting Compression); that is, it take bundles of parameters and
tom@516 27 % computes all the filter coefficients needed to run it.
tom@516 28 %
tom@516 29 % fs is sample rate (per second)
tom@516 30 % CF_filter_params bundles all the pole-zero filter cascade parameters
tom@516 31 % CF_AGC_params bundles all the automatic gain control parameters
tom@516 32 % CF_IHC_params bundles all the inner hair cell parameters
tom@516 33 %
tom@516 34 % See other functions for designing and characterizing the CARFAC:
tom@516 35 % [naps, CF] = CARFAC_Run(CF, input_waves)
tom@516 36 % transfns = CARFAC_Transfer_Functions(CF, to_channels, from_channels)
tom@516 37 %
tom@516 38 % Defaults to Glasberg & Moore's ERB curve:
tom@516 39 % ERB_break_freq = 1000/4.37; % 228.833
tom@516 40 % ERB_Q = 1000/(24.7*4.37); % 9.2645
tom@516 41 %
tom@516 42 % All args are defaultable; for sample/default args see the code; they
tom@516 43 % make 96 channels at default fs = 22050, 114 channels at 44100.
tom@516 44
tom@516 45 if nargin < 6
tom@516 46 % HACK: these constant control the defaults
tom@516 47 one_cap = 0; % bool; 0 for new two-cap hack
tom@516 48 just_hwr = 0; % book; 0 for normal/fancy IHC; 1 for HWR
tom@516 49 if just_hwr
tom@516 50 CF_IHC_params = struct('just_hwr', 1); % just a simple HWR
tom@516 51 else
tom@516 52 if one_cap
tom@516 53 CF_IHC_params = struct( ...
tom@516 54 'just_hwr', 0, ... % not just a simple HWR
tom@516 55 'one_cap', one_cap, ... % bool; 0 for new two-cap hack
tom@516 56 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
tom@516 57 'tau_out', 0.0005, ... % depletion tau is pretty fast
tom@516 58 'tau_in', 0.010 ); % recovery tau is slower
tom@516 59 else
tom@516 60 CF_IHC_params = struct( ...
tom@516 61 'just_hwr', 0, ... % not just a simple HWR
tom@516 62 'one_cap', one_cap, ... % bool; 0 for new two-cap hack
tom@516 63 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
tom@516 64 'tau1_out', 0.020, ... % depletion tau is pretty fast
tom@516 65 'tau1_in', 0.020, ... % recovery tau is slower
tom@516 66 'tau2_out', 0.005, ... % depletion tau is pretty fast
tom@516 67 'tau2_in', 0.005 ); % recovery tau is slower
tom@516 68 end
tom@516 69 end
tom@516 70 end
tom@516 71
tom@516 72 if nargin < 5
tom@516 73 % Ref: Glasberg and Moore: Hearing Research, 47 (1990), 103-138
tom@516 74 % ERB = 24.7 * (1 + 4.37 * CF_Hz / 1000);
tom@516 75 ERB_Q = 1000/(24.7*4.37); % 9.2645
tom@516 76 if nargin < 4
tom@516 77 ERB_break_freq = 1000/4.37; % 228.833
tom@516 78 end
tom@516 79 end
tom@516 80
tom@516 81 if nargin < 3
tom@516 82 CF_AGC_params = struct( ...
tom@516 83 'n_stages', 4, ...
tom@516 84 'time_constants', [1, 4, 16, 64]*0.002, ...
tom@516 85 'AGC_stage_gain', 2, ... % gain from each stage to next slower stage
tom@516 86 'decimation', 16, ... % how often to update the AGC states
tom@516 87 'AGC1_scales', [1, 2, 3, 4]*1, ... % in units of channels
tom@516 88 'AGC2_scales', [1, 2, 3, 4]*1.25, ... % spread more toward base
tom@516 89 'detect_scale', 0.15, ... % the desired damping range
tom@516 90 'AGC_mix_coeff', 0.25);
tom@516 91 end
tom@516 92
tom@516 93 if nargin < 2
tom@516 94 CF_filter_params = struct( ...
tom@516 95 'velocity_scale', 0.2, ... % for the cubic nonlinearity
tom@516 96 'min_zeta', 0.12, ...
tom@516 97 'first_pole_theta', 0.78*pi, ...
tom@516 98 'zero_ratio', sqrt(2), ...
tom@516 99 'ERB_per_step', 0.3333, ... % assume G&M's ERB formula
tom@516 100 'min_pole_Hz', 40 );
tom@516 101 end
tom@516 102
tom@516 103 if nargin < 1
tom@516 104 fs = 22050;
tom@516 105 end
tom@516 106
tom@516 107 % first figure out how many filter stages (PZFC/CARFAC channels):
tom@516 108 pole_Hz = CF_filter_params.first_pole_theta * fs / (2*pi);
tom@516 109 n_ch = 0;
tom@516 110 while pole_Hz > CF_filter_params.min_pole_Hz
tom@516 111 n_ch = n_ch + 1;
tom@516 112 pole_Hz = pole_Hz - CF_filter_params.ERB_per_step * ...
tom@516 113 ERB_Hz(pole_Hz, ERB_break_freq, ERB_Q);
tom@516 114 end
tom@516 115 % Now we have n_ch, the number of channels, so can make the array
tom@516 116 % and compute all the frequencies again to put into it:
tom@516 117 pole_freqs = zeros(n_ch, 1);
tom@516 118 pole_Hz = CF_filter_params.first_pole_theta * fs / (2*pi);
tom@516 119 for ch = 1:n_ch
tom@516 120 pole_freqs(ch) = pole_Hz;
tom@516 121 pole_Hz = pole_Hz - CF_filter_params.ERB_per_step * ...
tom@516 122 ERB_Hz(pole_Hz, ERB_break_freq, ERB_Q);
tom@516 123 end
tom@516 124 % now we have n_ch, the number of channels, and pole_freqs array
tom@516 125
tom@516 126 CF = struct( ...
tom@516 127 'fs', fs, ...
tom@516 128 'filter_params', CF_filter_params, ...
tom@516 129 'AGC_params', CF_AGC_params, ...
tom@516 130 'IHC_params', CF_IHC_params, ...
tom@516 131 'n_ch', n_ch, ...
tom@516 132 'pole_freqs', pole_freqs, ...
tom@516 133 'filter_coeffs', CARFAC_DesignFilters(CF_filter_params, fs, pole_freqs), ...
tom@516 134 'AGC_coeffs', CARFAC_DesignAGC(CF_AGC_params, fs), ...
tom@516 135 'IHC_coeffs', CARFAC_DesignIHC(CF_IHC_params, fs), ...
tom@516 136 'n_mics', 0 );
tom@516 137
tom@516 138 % adjust the AGC_coeffs to account for IHC saturation level to get right
tom@516 139 % damping change as specified in CF.AGC_params.detect_scale
tom@516 140 CF.AGC_coeffs.detect_scale = CF.AGC_params.detect_scale / ...
tom@516 141 (CF.IHC_coeffs.saturation_output * CF.AGC_coeffs.AGC_gain);
tom@516 142
tom@516 143 %% Design the filter coeffs:
tom@516 144 function filter_coeffs = CARFAC_DesignFilters(filter_params, fs, pole_freqs)
tom@516 145
tom@516 146 n_ch = length(pole_freqs);
tom@516 147
tom@516 148 % the filter design coeffs:
tom@516 149
tom@516 150 filter_coeffs = struct('velocity_scale', filter_params.velocity_scale);
tom@516 151
tom@516 152 filter_coeffs.r_coeffs = zeros(n_ch, 1);
tom@516 153 filter_coeffs.a_coeffs = zeros(n_ch, 1);
tom@516 154 filter_coeffs.c_coeffs = zeros(n_ch, 1);
tom@516 155 filter_coeffs.h_coeffs = zeros(n_ch, 1);
tom@516 156 filter_coeffs.g_coeffs = zeros(n_ch, 1);
tom@516 157
tom@516 158 % zero_ratio comes in via h. In book's circuit D, zero_ratio is 1/sqrt(a),
tom@516 159 % and that a is here 1 / (1+f) where h = f*c.
tom@516 160 % solve for f: 1/zero_ratio^2 = 1 / (1+f)
tom@516 161 % zero_ratio^2 = 1+f => f = zero_ratio^2 - 1
tom@516 162 f = filter_params.zero_ratio^2 - 1; % nominally 1 for half-octave
tom@516 163
tom@516 164 % Make pole positions, s and c coeffs, h and g coeffs, etc.,
tom@516 165 % which mostly depend on the pole angle theta:
tom@516 166 theta = pole_freqs .* (2 * pi / fs);
tom@516 167
tom@516 168 % different possible interpretations for min-damping r:
tom@516 169 % r = exp(-theta * CF_filter_params.min_zeta).
tom@516 170 % Using sin gives somewhat higher Q at highest thetas.
tom@516 171 r = (1 - sin(theta) * filter_params.min_zeta);
tom@516 172 filter_coeffs.r_coeffs = r;
tom@516 173
tom@516 174 % undamped coupled-form coefficients:
tom@516 175 filter_coeffs.a_coeffs = cos(theta);
tom@516 176 filter_coeffs.c_coeffs = sin(theta);
tom@516 177
tom@516 178 % the zeros follow via the h_coeffs
tom@516 179 h = sin(theta) .* f;
tom@516 180 filter_coeffs.h_coeffs = h;
tom@516 181
tom@516 182 r2 = r; % aim for unity DC gain at min damping, here; or could try r^2
tom@516 183 filter_coeffs.g_coeffs = 1 ./ (1 + h .* r2 .* sin(theta) ./ ...
tom@516 184 (1 - 2 * r2 .* cos(theta) + r2 .^ 2));
tom@516 185
tom@516 186
tom@516 187 %% the AGC design coeffs:
tom@516 188 function AGC_coeffs = CARFAC_DesignAGC(AGC_params, fs)
tom@516 189
tom@516 190 AGC_coeffs = struct('AGC_stage_gain', AGC_params.AGC_stage_gain, ...
tom@516 191 'AGC_mix_coeff', AGC_params.AGC_mix_coeff);
tom@516 192
tom@516 193
tom@516 194 % AGC1 pass is smoothing from base toward apex;
tom@516 195 % AGC2 pass is back, which is done first now
tom@516 196 AGC1_scales = AGC_params.AGC1_scales;
tom@516 197 AGC2_scales = AGC_params.AGC2_scales;
tom@516 198
tom@516 199 n_AGC_stages = AGC_params.n_stages;
tom@516 200 AGC_coeffs.AGC_epsilon = zeros(1, n_AGC_stages); % the 1/(tau*fs) roughly
tom@516 201 decim = AGC_params.decimation;
tom@516 202 gain = 0;
tom@516 203 for stage = 1:n_AGC_stages
tom@516 204 tau = AGC_params.time_constants(stage);
tom@516 205 % epsilon is how much new input to take at each update step:
tom@516 206 AGC_coeffs.AGC_epsilon(stage) = 1 - exp(-decim / (tau * fs));
tom@516 207 % and these are the smoothing scales and poles for decimated rate:
tom@516 208 ntimes = tau * (fs / decim); % effective number of smoothings
tom@516 209 % divide the spatial variance by effective number of smoothings:
tom@516 210 t = (AGC1_scales(stage)^2) / ntimes; % adjust scale for diffusion
tom@516 211 AGC_coeffs.AGC1_polez(stage) = 1 + 1/t - sqrt((1+1/t)^2 - 1);
tom@516 212 t = (AGC2_scales(stage)^2) / ntimes; % adjust scale for diffusion
tom@516 213 AGC_coeffs.AGC2_polez(stage) = 1 + 1/t - sqrt((1+1/t)^2 - 1);
tom@516 214 gain = gain + AGC_params.AGC_stage_gain^(stage-1);
tom@516 215 end
tom@516 216
tom@516 217 AGC_coeffs.AGC_gain = gain;
tom@516 218
tom@516 219 %% the IHC design coeffs:
tom@516 220 function IHC_coeffs = CARFAC_DesignIHC(IHC_params, fs)
tom@516 221
tom@516 222 if IHC_params.just_hwr
tom@516 223 IHC_coeffs = struct('just_hwr', 1);
tom@516 224 IHC_coeffs.saturation_output = 10; % HACK: assume some max out
tom@516 225 else
tom@516 226 if IHC_params.one_cap
tom@516 227 IHC_coeffs = struct(...
tom@516 228 'just_hwr', 0, ...
tom@516 229 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
tom@516 230 'out_rate', 1 / (IHC_params.tau_out * fs), ...
tom@516 231 'in_rate', 1 / (IHC_params.tau_in * fs), ...
tom@516 232 'one_cap', IHC_params.one_cap);
tom@516 233 else
tom@516 234 IHC_coeffs = struct(...
tom@516 235 'just_hwr', 0, ...
tom@516 236 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
tom@516 237 'out1_rate', 1 / (IHC_params.tau1_out * fs), ...
tom@516 238 'in1_rate', 1 / (IHC_params.tau1_in * fs), ...
tom@516 239 'out2_rate', 1 / (IHC_params.tau2_out * fs), ...
tom@516 240 'in2_rate', 1 / (IHC_params.tau2_in * fs), ...
tom@516 241 'one_cap', IHC_params.one_cap);
tom@516 242 end
tom@516 243
tom@516 244 % run one channel to convergence to get rest state:
tom@516 245 IHC_coeffs.rest_output = 0;
tom@516 246 IHC_state = struct( ...
tom@516 247 'cap_voltage', 0, ...
tom@516 248 'cap1_voltage', 0, ...
tom@516 249 'cap2_voltage', 0, ...
tom@516 250 'lpf1_state', 0, ...
tom@516 251 'lpf2_state', 0, ...
tom@516 252 'ihc_accum', 0);
tom@516 253
tom@516 254 IHC_in = 0;
tom@516 255 for k = 1:30000
tom@516 256 [IHC_out, IHC_state] = CARFAC_IHCStep(IHC_in, IHC_coeffs, IHC_state);
tom@516 257 end
tom@516 258
tom@516 259 IHC_coeffs.rest_output = IHC_out;
tom@516 260 IHC_coeffs.rest_cap = IHC_state.cap_voltage;
tom@516 261 IHC_coeffs.rest_cap1 = IHC_state.cap1_voltage;
tom@516 262 IHC_coeffs.rest_cap2 = IHC_state.cap2_voltage;
tom@516 263
tom@516 264 LARGE = 2;
tom@516 265 IHC_in = LARGE; % "Large" saturating input to IHC; make it alternate
tom@516 266 for k = 1:30000
tom@516 267 [IHC_out, IHC_state] = CARFAC_IHCStep(IHC_in, IHC_coeffs, IHC_state);
tom@516 268 prev_IHC_out = IHC_out;
tom@516 269 IHC_in = -IHC_in;
tom@516 270 end
tom@516 271
tom@516 272 IHC_coeffs.saturation_output = (IHC_out + prev_IHC_out) / 2;
tom@516 273 end
tom@516 274
tom@516 275 %%
tom@516 276 % default design result, running this function with no args, should look
tom@516 277 % like this, before CARFAC_Init puts state storage into it:
tom@516 278 %
tom@516 279 % CF = CARFAC_Design
tom@516 280 % CF.filter_params
tom@516 281 % CF.AGC_params
tom@516 282 % CF.filter_coeffs
tom@516 283 % CF.AGC_coeffs
tom@516 284 % CF.IHC_coeffs
tom@516 285 %
tom@516 286 % CF =
tom@516 287 % fs: 22050
tom@516 288 % filter_params: [1x1 struct]
tom@516 289 % AGC_params: [1x1 struct]
tom@516 290 % IHC_params: [1x1 struct]
tom@516 291 % n_ch: 96
tom@516 292 % pole_freqs: [96x1 double]
tom@516 293 % filter_coeffs: [1x1 struct]
tom@516 294 % AGC_coeffs: [1x1 struct]
tom@516 295 % IHC_coeffs: [1x1 struct]
tom@516 296 % n_mics: 0
tom@516 297 % ans =
tom@516 298 % velocity_scale: 0.2000
tom@516 299 % min_zeta: 0.1200
tom@516 300 % first_pole_theta: 2.4504
tom@516 301 % zero_ratio: 1.4142
tom@516 302 % ERB_per_step: 0.3333
tom@516 303 % min_pole_Hz: 40
tom@516 304 % ans =
tom@516 305 % n_stages: 4
tom@516 306 % time_constants: [0.0020 0.0080 0.0320 0.1280]
tom@516 307 % AGC_stage_gain: 2
tom@516 308 % decimation: 16
tom@516 309 % AGC1_scales: [1 2 3 4]
tom@516 310 % AGC2_scales: [1.2500 2.5000 3.7500 5]
tom@516 311 % detect_scale: 0.1500
tom@516 312 % AGC_mix_coeff: 0.2500
tom@516 313 % ans =
tom@516 314 % velocity_scale: 0.2000
tom@516 315 % r_coeffs: [96x1 double]
tom@516 316 % a_coeffs: [96x1 double]
tom@516 317 % c_coeffs: [96x1 double]
tom@516 318 % h_coeffs: [96x1 double]
tom@516 319 % g_coeffs: [96x1 double]
tom@516 320 % ans =
tom@516 321 % AGC_stage_gain: 2
tom@516 322 % AGC_mix_coeff: 0.2500
tom@516 323 % AGC_epsilon: [0.3043 0.0867 0.0224 0.0057]
tom@516 324 % AGC1_polez: [0.1356 0.1356 0.0854 0.0417]
tom@516 325 % AGC2_polez: [0.1872 0.1872 0.1227 0.0623]
tom@516 326 % AGC_gain: 15
tom@516 327 % detect_scale: 0.0630
tom@516 328 % ans =
tom@516 329 % lpf_coeff: 0.4327
tom@516 330 % out1_rate: 0.0023
tom@516 331 % in1_rate: 0.0023
tom@516 332 % out2_rate: 0.0091
tom@516 333 % in2_rate: 0.0091
tom@516 334 % one_cap: 0
tom@516 335 % rest_output: 0.0365
tom@516 336 % rest_cap: 0
tom@516 337 % rest_cap1: 0.9635
tom@516 338 % rest_cap2: 0.9269
tom@516 339 % saturation_output: 0.1587
tom@516 340
tom@516 341
tom@516 342