Mercurial > hg > aimc
diff trunk/matlab/bmm/carfac/CARFAC_Design.m @ 530:fb60ea429bb8
reparameterize stage gain g and compressed damping with theta; interpolate g
author | dicklyon@google.com |
---|---|
date | Sun, 11 Mar 2012 00:31:57 +0000 |
parents | 741187dc780f |
children | 55c46c01e522 |
line wrap: on
line diff
--- a/trunk/matlab/bmm/carfac/CARFAC_Design.m Sat Mar 10 06:22:56 2012 +0000 +++ b/trunk/matlab/bmm/carfac/CARFAC_Design.m Sun Mar 11 00:31:57 2012 +0000 @@ -96,9 +96,10 @@ 'v_offset', 0.01, ... % offset gives a quadratic part 'v2_corner', 0.2, ... % corner for essential nonlin 'v_damp_max', 0.01, ... % damping delta damping from velocity nonlin - 'min_zeta', 0.12, ... + 'min_zeta', 0.10, ... 'first_pole_theta', 0.85*pi, ... 'zero_ratio', sqrt(2), ... % how far zero is above pole + 'high_f_damping_compression', 0.5, ... % 0 to 1 to compress zeta 'ERB_per_step', 0.5, ... % assume G&M's ERB formula 'min_pole_Hz', 30 ); end @@ -159,11 +160,11 @@ 'v_damp_max', filter_params.v_damp_max ... ); -filter_coeffs.r_coeffs = zeros(n_ch, 1); -filter_coeffs.a_coeffs = zeros(n_ch, 1); -filter_coeffs.c_coeffs = zeros(n_ch, 1); +filter_coeffs.r1_coeffs = zeros(n_ch, 1); +filter_coeffs.a0_coeffs = zeros(n_ch, 1); +filter_coeffs.c0_coeffs = zeros(n_ch, 1); filter_coeffs.h_coeffs = zeros(n_ch, 1); -filter_coeffs.g_coeffs = zeros(n_ch, 1); +filter_coeffs.g0_coeffs = zeros(n_ch, 1); % zero_ratio comes in via h. In book's circuit D, zero_ratio is 1/sqrt(a), % and that a is here 1 / (1+f) where h = f*c. @@ -175,31 +176,35 @@ % which mostly depend on the pole angle theta: theta = pole_freqs .* (2 * pi / fs); +c0 = sin(theta); +a0 = cos(theta); + % different possible interpretations for min-damping r: % r = exp(-theta * CF_filter_params.min_zeta). -% Using sin gives somewhat higher Q at highest thetas. -ff = 5; % fudge factor for theta distortion; at least 1.0 -r = (1 - ff*sin(theta/ff) * filter_params.min_zeta); -filter_coeffs.r_coeffs = r; +% Compress theta to give somewhat higher Q at highest thetas: +ff = filter_params.high_f_damping_compression; % 0 to 1; typ. 0.5 +x = theta/pi; +zr_coeffs = pi * (x - ff * x.^3); % when ff is 0, this is just theta, +% and when ff is 1 it goes to zero at theta = pi. +filter_coeffs.zr_coeffs = zr_coeffs; % how r relates to zeta + +r = (1 - zr_coeffs * filter_params.min_zeta); +filter_coeffs.r1_coeffs = r; % undamped coupled-form coefficients: -filter_coeffs.a_coeffs = cos(theta); -filter_coeffs.c_coeffs = sin(theta); +filter_coeffs.a0_coeffs = a0; +filter_coeffs.c0_coeffs = c0; % the zeros follow via the h_coeffs -h = sin(theta) .* f; +h = c0 .* f; filter_coeffs.h_coeffs = h; -% % unity gain at min damping, radius r: -g = (1 - 2*r.*cos(theta) + r.^2) ./ ... - (1 - 2*r .* cos(theta) + h .* r .* sin(theta) + r.^2); -% or assume r is 1, for the zero-damping gain g0: -g0 = (2 - 2*cos(theta)) ./ ... - (2 - 2 * cos(theta) + h .* sin(theta)); +% for unity gain at min damping, radius r; only used in CARFAC_Init: +extra_damping = zeros(size(r)); +% this function needs to take filter_coeffs even if we haven't finished +% constucting it by putting in the g0_coeffs: +filter_coeffs.g0_coeffs = CARFAC_Stage_g(filter_coeffs, extra_damping); -filter_coeffs.g_coeffs = g0; -% make coeffs that can correct g0 to make g based on (1 - r).^2: -filter_coeffs.gr_coeffs = ((g ./ g0) - 1) ./ ((1 - r).^2); %% the AGC design coeffs: function AGC_coeffs = CARFAC_DesignAGC(AGC_params, fs) @@ -385,57 +390,62 @@ % CF.AGC_coeffs % CF.IHC_coeffs % -% CF = -% fs: 22050 -% filter_params: [1x1 struct] -% AGC_params: [1x1 struct] -% IHC_params: [1x1 struct] -% n_ch: 96 -% pole_freqs: [96x1 double] -% filter_coeffs: [1x1 struct] -% AGC_coeffs: [1x1 struct] -% IHC_coeffs: [1x1 struct] -% n_mics: 0 -% ans = -% velocity_scale: 0.2000 -% v_offset: 0.0100 -% v2_corner: 0.2000 -% v_damp_max: 0.0100 -% min_zeta: 0.1200 -% first_pole_theta: 2.4504 -% zero_ratio: 1.4142 -% ERB_per_step: 0.3333 -% min_pole_Hz: 40 -% ans = +% CF = +% fs: 22050 +% max_channels_per_octave: 12.1873 +% filter_params: [1x1 struct] +% AGC_params: [1x1 struct] +% IHC_params: [1x1 struct] +% n_ch: 66 +% pole_freqs: [66x1 double] +% filter_coeffs: [1x1 struct] +% AGC_coeffs: [1x1 struct] +% IHC_coeffs: [1x1 struct] +% n_mics: 0 +% ans = +% velocity_scale: 0.2000 +% v_offset: 0.0100 +% v2_corner: 0.2000 +% v_damp_max: 0.0100 +% min_zeta: 0.1200 +% first_pole_theta: 2.6704 +% zero_ratio: 1.4142 +% high_f_damping_compression: 0.5000 +% ERB_per_step: 0.5000 +% min_pole_Hz: 30 +% ans = % n_stages: 4 % time_constants: [0.0020 0.0080 0.0320 0.1280] % AGC_stage_gain: 2 % decimation: [8 2 2 2] -% AGC1_scales: [1 2 4 8] -% AGC2_scales: [1.5000 3 6 12] +% AGC1_scales: [1 2 4 6] +% AGC2_scales: [1.5000 3 6 9] % detect_scale: 0.1500 -% AGC_mix_coeff: 0.3500 -% ans = +% AGC_mix_coeff: 0.5000 +% ans = % velocity_scale: 0.2000 % v_offset: 0.0100 % v2_corner: 0.2000 % v_damp_max: 0.0100 -% r_coeffs: [96x1 double] -% a_coeffs: [96x1 double] -% c_coeffs: [96x1 double] -% h_coeffs: [96x1 double] -% g_coeffs: [96x1 double] -% ans = +% r1_coeffs: [66x1 double] +% a0_coeffs: [66x1 double] +% c0_coeffs: [66x1 double] +% h_coeffs: [66x1 double] +% g0_coeffs: [66x1 double] +% zr_coeffs: [66x1 double] +% ans = % AGC_stage_gain: 2 % AGC_epsilon: [0.1659 0.0867 0.0443 0.0224] % decimation: [8 2 2 2] -% AGC_spatial_iterations: [1 1 2 3] +% AGC_polez1: [0.1627 0.2713 0.3944 0.4194] +% AGC_polez2: [0.2219 0.3165 0.4260 0.4414] +% AGC_spatial_iterations: [1 1 2 2] % AGC_spatial_FIR: [3x4 double] % AGC_n_taps: [3 5 5 5] -% AGC_mix_coeffs: [0 0.0317 0.0159 0.0079] +% AGC_mix_coeffs: [0 0.0454 0.0227 0.0113] % AGC_gain: 15 % detect_scale: 0.0664 -% ans = +% ans = % just_hwr: 0 % lpf_coeff: 0.4327 % out1_rate: 0.0023 @@ -449,4 +459,3 @@ % rest_cap2: 0.9269 % saturation_output: 0.1507 -