tom@516
|
1 % Copyright 2012, Google, Inc.
|
tom@516
|
2 % Author: Richard F. Lyon
|
tom@516
|
3 %
|
tom@516
|
4 % This Matlab file is part of an implementation of Lyon's cochlear model:
|
tom@516
|
5 % "Cascade of Asymmetric Resonators with Fast-Acting Compression"
|
tom@516
|
6 % to supplement Lyon's upcoming book "Human and Machine Hearing"
|
tom@516
|
7 %
|
tom@516
|
8 % Licensed under the Apache License, Version 2.0 (the "License");
|
tom@516
|
9 % you may not use this file except in compliance with the License.
|
tom@516
|
10 % You may obtain a copy of the License at
|
tom@516
|
11 %
|
tom@516
|
12 % http://www.apache.org/licenses/LICENSE-2.0
|
tom@516
|
13 %
|
tom@516
|
14 % Unless required by applicable law or agreed to in writing, software
|
tom@516
|
15 % distributed under the License is distributed on an "AS IS" BASIS,
|
tom@516
|
16 % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
tom@516
|
17 % See the License for the specific language governing permissions and
|
tom@516
|
18 % limitations under the License.
|
tom@516
|
19
|
dicklyon@553
|
20 function CF = CARFAC_Design(fs, CF_CAR_params, CF_AGC_params, CF_IHC_params)
|
dicklyon@534
|
21 % function CF = CARFAC_Design(fs, CF_CAR_params, ...
|
tom@516
|
22 % CF_AGC_params, ERB_break_freq, ERB_Q, CF_IHC_params)
|
tom@516
|
23 %
|
tom@516
|
24 % This function designs the CARFAC (Cascade of Asymmetric Resonators with
|
tom@516
|
25 % Fast-Acting Compression); that is, it take bundles of parameters and
|
tom@516
|
26 % computes all the filter coefficients needed to run it.
|
tom@516
|
27 %
|
tom@516
|
28 % fs is sample rate (per second)
|
dicklyon@534
|
29 % CF_CAR_params bundles all the pole-zero filter cascade parameters
|
tom@516
|
30 % CF_AGC_params bundles all the automatic gain control parameters
|
tom@516
|
31 % CF_IHC_params bundles all the inner hair cell parameters
|
tom@516
|
32 %
|
tom@516
|
33 % See other functions for designing and characterizing the CARFAC:
|
tom@516
|
34 % [naps, CF] = CARFAC_Run(CF, input_waves)
|
tom@516
|
35 % transfns = CARFAC_Transfer_Functions(CF, to_channels, from_channels)
|
tom@516
|
36 %
|
tom@516
|
37 % Defaults to Glasberg & Moore's ERB curve:
|
tom@516
|
38 % ERB_break_freq = 1000/4.37; % 228.833
|
tom@516
|
39 % ERB_Q = 1000/(24.7*4.37); % 9.2645
|
tom@516
|
40 %
|
tom@516
|
41 % All args are defaultable; for sample/default args see the code; they
|
tom@516
|
42 % make 96 channels at default fs = 22050, 114 channels at 44100.
|
tom@516
|
43
|
dicklyon@553
|
44 if nargin < 4
|
tom@516
|
45 % HACK: these constant control the defaults
|
tom@516
|
46 one_cap = 0; % bool; 0 for new two-cap hack
|
tom@516
|
47 just_hwr = 0; % book; 0 for normal/fancy IHC; 1 for HWR
|
tom@516
|
48 if just_hwr
|
tom@516
|
49 CF_IHC_params = struct('just_hwr', 1); % just a simple HWR
|
tom@516
|
50 else
|
tom@516
|
51 if one_cap
|
tom@516
|
52 CF_IHC_params = struct( ...
|
dicklyon@523
|
53 'just_hwr', just_hwr, ... % not just a simple HWR
|
tom@516
|
54 'one_cap', one_cap, ... % bool; 0 for new two-cap hack
|
tom@516
|
55 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
|
tom@516
|
56 'tau_out', 0.0005, ... % depletion tau is pretty fast
|
tom@516
|
57 'tau_in', 0.010 ); % recovery tau is slower
|
tom@516
|
58 else
|
tom@516
|
59 CF_IHC_params = struct( ...
|
dicklyon@523
|
60 'just_hwr', just_hwr, ... % not just a simple HWR
|
tom@516
|
61 'one_cap', one_cap, ... % bool; 0 for new two-cap hack
|
tom@516
|
62 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
|
tom@516
|
63 'tau1_out', 0.020, ... % depletion tau is pretty fast
|
tom@516
|
64 'tau1_in', 0.020, ... % recovery tau is slower
|
tom@516
|
65 'tau2_out', 0.005, ... % depletion tau is pretty fast
|
tom@516
|
66 'tau2_in', 0.005 ); % recovery tau is slower
|
tom@516
|
67 end
|
tom@516
|
68 end
|
tom@516
|
69 end
|
tom@516
|
70
|
tom@516
|
71 if nargin < 3
|
tom@516
|
72 CF_AGC_params = struct( ...
|
tom@516
|
73 'n_stages', 4, ...
|
tom@516
|
74 'time_constants', [1, 4, 16, 64]*0.002, ...
|
tom@516
|
75 'AGC_stage_gain', 2, ... % gain from each stage to next slower stage
|
dicklyon@523
|
76 'decimation', [8, 2, 2, 2], ... % how often to update the AGC states
|
dicklyon@536
|
77 'AGC1_scales', [1.0, 1.4, 2.0, 2.8], ... % in units of channels
|
dicklyon@536
|
78 'AGC2_scales', [1.6, 2.25, 3.2, 4.5], ... % spread more toward base
|
dicklyon@536
|
79 'detect_scale', 0.25, ... % the desired damping range
|
dicklyon@523
|
80 'AGC_mix_coeff', 0.5);
|
tom@516
|
81 end
|
tom@516
|
82
|
tom@516
|
83 if nargin < 2
|
dicklyon@534
|
84 CF_CAR_params = struct( ...
|
dicklyon@523
|
85 'velocity_scale', 0.2, ... % for the "cubic" velocity nonlinearity
|
dicklyon@523
|
86 'v_offset', 0.01, ... % offset gives a quadratic part
|
dicklyon@523
|
87 'v2_corner', 0.2, ... % corner for essential nonlin
|
dicklyon@523
|
88 'v_damp_max', 0.01, ... % damping delta damping from velocity nonlin
|
dicklyon@533
|
89 'min_zeta', 0.10, ... % minimum damping factor in mid-freq channels
|
dicklyon@528
|
90 'first_pole_theta', 0.85*pi, ...
|
dicklyon@528
|
91 'zero_ratio', sqrt(2), ... % how far zero is above pole
|
dicklyon@530
|
92 'high_f_damping_compression', 0.5, ... % 0 to 1 to compress zeta
|
dicklyon@528
|
93 'ERB_per_step', 0.5, ... % assume G&M's ERB formula
|
dicklyon@553
|
94 'min_pole_Hz', 30, ...
|
dicklyon@553
|
95 'ERB_break_freq', 165.3, ... % Greenwood map's break freq.
|
dicklyon@553
|
96 'ERB_Q', 1000/(24.7*4.37)); % Glasberg and Moore's high-cf ratio
|
tom@516
|
97 end
|
tom@516
|
98
|
tom@516
|
99 if nargin < 1
|
tom@516
|
100 fs = 22050;
|
tom@516
|
101 end
|
tom@516
|
102
|
tom@516
|
103 % first figure out how many filter stages (PZFC/CARFAC channels):
|
dicklyon@534
|
104 pole_Hz = CF_CAR_params.first_pole_theta * fs / (2*pi);
|
tom@516
|
105 n_ch = 0;
|
dicklyon@534
|
106 while pole_Hz > CF_CAR_params.min_pole_Hz
|
tom@516
|
107 n_ch = n_ch + 1;
|
dicklyon@534
|
108 pole_Hz = pole_Hz - CF_CAR_params.ERB_per_step * ...
|
dicklyon@553
|
109 ERB_Hz(pole_Hz, CF_CAR_params.ERB_break_freq, CF_CAR_params.ERB_Q);
|
tom@516
|
110 end
|
tom@516
|
111 % Now we have n_ch, the number of channels, so can make the array
|
tom@516
|
112 % and compute all the frequencies again to put into it:
|
tom@516
|
113 pole_freqs = zeros(n_ch, 1);
|
dicklyon@534
|
114 pole_Hz = CF_CAR_params.first_pole_theta * fs / (2*pi);
|
tom@516
|
115 for ch = 1:n_ch
|
tom@516
|
116 pole_freqs(ch) = pole_Hz;
|
dicklyon@534
|
117 pole_Hz = pole_Hz - CF_CAR_params.ERB_per_step * ...
|
dicklyon@553
|
118 ERB_Hz(pole_Hz, CF_CAR_params.ERB_break_freq, CF_CAR_params.ERB_Q);
|
tom@516
|
119 end
|
tom@516
|
120 % now we have n_ch, the number of channels, and pole_freqs array
|
tom@516
|
121
|
dicklyon@528
|
122 max_channels_per_octave = log(2) / log(pole_freqs(1)/pole_freqs(2));
|
dicklyon@528
|
123
|
tom@516
|
124 CF = struct( ...
|
tom@516
|
125 'fs', fs, ...
|
dicklyon@528
|
126 'max_channels_per_octave', max_channels_per_octave, ...
|
dicklyon@534
|
127 'CAR_params', CF_CAR_params, ...
|
tom@516
|
128 'AGC_params', CF_AGC_params, ...
|
tom@516
|
129 'IHC_params', CF_IHC_params, ...
|
tom@516
|
130 'n_ch', n_ch, ...
|
tom@516
|
131 'pole_freqs', pole_freqs, ...
|
dicklyon@534
|
132 'CAR_coeffs', CARFAC_DesignFilters(CF_CAR_params, fs, pole_freqs), ...
|
dicklyon@534
|
133 'AGC_coeffs', CARFAC_DesignAGC(CF_AGC_params, fs, n_ch), ...
|
dicklyon@534
|
134 'IHC_coeffs', CARFAC_DesignIHC(CF_IHC_params, fs, n_ch), ...
|
dicklyon@534
|
135 'n_ears', 0 );
|
tom@516
|
136
|
tom@516
|
137 % adjust the AGC_coeffs to account for IHC saturation level to get right
|
tom@516
|
138 % damping change as specified in CF.AGC_params.detect_scale
|
tom@516
|
139 CF.AGC_coeffs.detect_scale = CF.AGC_params.detect_scale / ...
|
tom@516
|
140 (CF.IHC_coeffs.saturation_output * CF.AGC_coeffs.AGC_gain);
|
tom@516
|
141
|
dicklyon@534
|
142
|
tom@516
|
143 %% Design the filter coeffs:
|
dicklyon@534
|
144 function CAR_coeffs = CARFAC_DesignFilters(CAR_params, fs, pole_freqs)
|
tom@516
|
145
|
tom@516
|
146 n_ch = length(pole_freqs);
|
tom@516
|
147
|
tom@516
|
148 % the filter design coeffs:
|
tom@516
|
149
|
dicklyon@534
|
150 CAR_coeffs = struct( ...
|
dicklyon@534
|
151 'n_ch', n_ch, ...
|
dicklyon@534
|
152 'velocity_scale', CAR_params.velocity_scale, ...
|
dicklyon@534
|
153 'v_offset', CAR_params.v_offset, ...
|
dicklyon@534
|
154 'v2_corner', CAR_params.v2_corner, ...
|
dicklyon@534
|
155 'v_damp_max', CAR_params.v_damp_max ...
|
dicklyon@523
|
156 );
|
tom@516
|
157
|
dicklyon@534
|
158 CAR_coeffs.r1_coeffs = zeros(n_ch, 1);
|
dicklyon@534
|
159 CAR_coeffs.a0_coeffs = zeros(n_ch, 1);
|
dicklyon@534
|
160 CAR_coeffs.c0_coeffs = zeros(n_ch, 1);
|
dicklyon@534
|
161 CAR_coeffs.h_coeffs = zeros(n_ch, 1);
|
dicklyon@534
|
162 CAR_coeffs.g0_coeffs = zeros(n_ch, 1);
|
tom@516
|
163
|
tom@516
|
164 % zero_ratio comes in via h. In book's circuit D, zero_ratio is 1/sqrt(a),
|
tom@516
|
165 % and that a is here 1 / (1+f) where h = f*c.
|
tom@516
|
166 % solve for f: 1/zero_ratio^2 = 1 / (1+f)
|
tom@516
|
167 % zero_ratio^2 = 1+f => f = zero_ratio^2 - 1
|
dicklyon@534
|
168 f = CAR_params.zero_ratio^2 - 1; % nominally 1 for half-octave
|
tom@516
|
169
|
tom@516
|
170 % Make pole positions, s and c coeffs, h and g coeffs, etc.,
|
tom@516
|
171 % which mostly depend on the pole angle theta:
|
tom@516
|
172 theta = pole_freqs .* (2 * pi / fs);
|
tom@516
|
173
|
dicklyon@530
|
174 c0 = sin(theta);
|
dicklyon@530
|
175 a0 = cos(theta);
|
dicklyon@530
|
176
|
tom@516
|
177 % different possible interpretations for min-damping r:
|
dicklyon@534
|
178 % r = exp(-theta * CF_CAR_params.min_zeta).
|
dicklyon@530
|
179 % Compress theta to give somewhat higher Q at highest thetas:
|
dicklyon@534
|
180 ff = CAR_params.high_f_damping_compression; % 0 to 1; typ. 0.5
|
dicklyon@530
|
181 x = theta/pi;
|
dicklyon@530
|
182 zr_coeffs = pi * (x - ff * x.^3); % when ff is 0, this is just theta,
|
dicklyon@530
|
183 % and when ff is 1 it goes to zero at theta = pi.
|
dicklyon@534
|
184 CAR_coeffs.zr_coeffs = zr_coeffs; % how r relates to zeta
|
dicklyon@530
|
185
|
dicklyon@534
|
186 min_zeta = CAR_params.min_zeta;
|
dicklyon@533
|
187 % increase the min damping where channels are spaced out more:
|
dicklyon@553
|
188
|
dicklyon@553
|
189 min_zeta = min_zeta + 0.25*(ERB_Hz(pole_freqs, ...
|
dicklyon@553
|
190 CAR_params.ERB_break_freq, CAR_params.ERB_Q) ./ pole_freqs - min_zeta);
|
dicklyon@533
|
191 r1 = (1 - zr_coeffs .* min_zeta); % "1" for the min-damping condition
|
dicklyon@533
|
192
|
dicklyon@534
|
193 CAR_coeffs.r1_coeffs = r1;
|
tom@516
|
194
|
tom@516
|
195 % undamped coupled-form coefficients:
|
dicklyon@534
|
196 CAR_coeffs.a0_coeffs = a0;
|
dicklyon@534
|
197 CAR_coeffs.c0_coeffs = c0;
|
tom@516
|
198
|
tom@516
|
199 % the zeros follow via the h_coeffs
|
dicklyon@530
|
200 h = c0 .* f;
|
dicklyon@534
|
201 CAR_coeffs.h_coeffs = h;
|
tom@516
|
202
|
dicklyon@530
|
203 % for unity gain at min damping, radius r; only used in CARFAC_Init:
|
dicklyon@533
|
204 extra_damping = zeros(size(r1));
|
dicklyon@534
|
205 % this function needs to take CAR_coeffs even if we haven't finished
|
dicklyon@530
|
206 % constucting it by putting in the g0_coeffs:
|
dicklyon@534
|
207 CAR_coeffs.g0_coeffs = CARFAC_Stage_g(CAR_coeffs, extra_damping);
|
tom@516
|
208
|
tom@516
|
209
|
tom@516
|
210 %% the AGC design coeffs:
|
dicklyon@534
|
211 function AGC_coeffs = CARFAC_DesignAGC(AGC_params, fs, n_ch)
|
tom@516
|
212
|
dicklyon@534
|
213 n_AGC_stages = AGC_params.n_stages;
|
dicklyon@534
|
214 AGC_coeffs = struct( ...
|
dicklyon@534
|
215 'n_ch', n_ch, ...
|
dicklyon@534
|
216 'n_AGC_stages', n_AGC_stages, ...
|
dicklyon@534
|
217 'AGC_stage_gain', AGC_params.AGC_stage_gain);
|
tom@516
|
218
|
tom@516
|
219 % AGC1 pass is smoothing from base toward apex;
|
tom@516
|
220 % AGC2 pass is back, which is done first now
|
tom@516
|
221 AGC1_scales = AGC_params.AGC1_scales;
|
tom@516
|
222 AGC2_scales = AGC_params.AGC2_scales;
|
tom@516
|
223
|
tom@516
|
224 AGC_coeffs.AGC_epsilon = zeros(1, n_AGC_stages); % the 1/(tau*fs) roughly
|
dicklyon@523
|
225 decim = 1;
|
dicklyon@523
|
226 AGC_coeffs.decimation = AGC_params.decimation;
|
dicklyon@523
|
227
|
dicklyon@523
|
228 total_DC_gain = 0;
|
tom@516
|
229 for stage = 1:n_AGC_stages
|
dicklyon@525
|
230 tau = AGC_params.time_constants(stage); % time constant in seconds
|
dicklyon@525
|
231 decim = decim * AGC_params.decimation(stage); % net decim to this stage
|
tom@516
|
232 % epsilon is how much new input to take at each update step:
|
tom@516
|
233 AGC_coeffs.AGC_epsilon(stage) = 1 - exp(-decim / (tau * fs));
|
dicklyon@523
|
234 % effective number of smoothings in a time constant:
|
dicklyon@525
|
235 ntimes = tau * (fs / decim); % typically 5 to 50
|
dicklyon@524
|
236
|
dicklyon@524
|
237 % decide on target spread (variance) and delay (mean) of impulse
|
dicklyon@524
|
238 % response as a distribution to be convolved ntimes:
|
dicklyon@525
|
239 % TODO (dicklyon): specify spread and delay instead of scales???
|
dicklyon@524
|
240 delay = (AGC2_scales(stage) - AGC1_scales(stage)) / ntimes;
|
dicklyon@524
|
241 spread_sq = (AGC1_scales(stage)^2 + AGC2_scales(stage)^2) / ntimes;
|
dicklyon@524
|
242
|
dicklyon@525
|
243 % get pole positions to better match intended spread and delay of
|
dicklyon@525
|
244 % [[geometric distribution]] in each direction (see wikipedia)
|
dicklyon@524
|
245 u = 1 + 1 / spread_sq; % these are based on off-line algebra hacking.
|
dicklyon@524
|
246 p = u - sqrt(u^2 - 1); % pole that would give spread if used twice.
|
dicklyon@524
|
247 dp = delay * (1 - 2*p +p^2)/2;
|
dicklyon@524
|
248 polez1 = p - dp;
|
dicklyon@524
|
249 polez2 = p + dp;
|
dicklyon@523
|
250 AGC_coeffs.AGC_polez1(stage) = polez1;
|
dicklyon@523
|
251 AGC_coeffs.AGC_polez2(stage) = polez2;
|
dicklyon@523
|
252
|
dicklyon@525
|
253 % try a 3- or 5-tap FIR as an alternative to the double exponential:
|
dicklyon@525
|
254 n_taps = 0;
|
dicklyon@525
|
255 FIR_OK = 0;
|
dicklyon@525
|
256 n_iterations = 1;
|
dicklyon@525
|
257 while ~FIR_OK
|
dicklyon@525
|
258 switch n_taps
|
dicklyon@525
|
259 case 0
|
dicklyon@525
|
260 % first attempt a 3-point FIR to apply once:
|
dicklyon@525
|
261 n_taps = 3;
|
dicklyon@525
|
262 case 3
|
dicklyon@525
|
263 % second time through, go wider but stick to 1 iteration
|
dicklyon@525
|
264 n_taps = 5;
|
dicklyon@525
|
265 case 5
|
dicklyon@525
|
266 % apply FIR multiple times instead of going wider:
|
dicklyon@525
|
267 n_iterations = n_iterations + 1;
|
dicklyon@525
|
268 if n_iterations > 16
|
dicklyon@525
|
269 error('Too many n_iterations in CARFAC_DesignAGC');
|
dicklyon@525
|
270 end
|
dicklyon@525
|
271 otherwise
|
dicklyon@525
|
272 % to do other n_taps would need changes in CARFAC_Spatial_Smooth
|
dicklyon@525
|
273 % and in Design_FIR_coeffs
|
dicklyon@525
|
274 error('Bad n_taps in CARFAC_DesignAGC');
|
dicklyon@523
|
275 end
|
dicklyon@525
|
276 [AGC_spatial_FIR, FIR_OK] = Design_FIR_coeffs( ...
|
dicklyon@525
|
277 n_taps, spread_sq, delay, n_iterations);
|
dicklyon@523
|
278 end
|
dicklyon@525
|
279 % when FIR_OK, store the resulting FIR design in coeffs:
|
dicklyon@523
|
280 AGC_coeffs.AGC_spatial_iterations(stage) = n_iterations;
|
dicklyon@523
|
281 AGC_coeffs.AGC_spatial_FIR(:,stage) = AGC_spatial_FIR;
|
dicklyon@536
|
282 AGC_coeffs.AGC_spatial_n_taps(stage) = n_taps;
|
dicklyon@523
|
283
|
dicklyon@525
|
284 % accumulate DC gains from all the stages, accounting for stage_gain:
|
dicklyon@523
|
285 total_DC_gain = total_DC_gain + AGC_params.AGC_stage_gain^(stage-1);
|
dicklyon@523
|
286
|
dicklyon@525
|
287 % TODO (dicklyon) -- is this the best binaural mixing plan?
|
dicklyon@523
|
288 if stage == 1
|
dicklyon@523
|
289 AGC_coeffs.AGC_mix_coeffs(stage) = 0;
|
dicklyon@523
|
290 else
|
dicklyon@523
|
291 AGC_coeffs.AGC_mix_coeffs(stage) = AGC_params.AGC_mix_coeff / ...
|
dicklyon@523
|
292 (tau * (fs / decim));
|
dicklyon@523
|
293 end
|
tom@516
|
294 end
|
tom@516
|
295
|
dicklyon@524
|
296 AGC_coeffs.AGC_gain = total_DC_gain;
|
dicklyon@523
|
297
|
dicklyon@525
|
298 % % print some results
|
dicklyon@536
|
299 AGC_coeffs
|
dicklyon@536
|
300 AGC_spatial_FIR = AGC_coeffs.AGC_spatial_FIR
|
dicklyon@536
|
301 AGC_spatial_iterations = AGC_coeffs.AGC_spatial_iterations
|
dicklyon@536
|
302 AGC_spatial_n_taps = AGC_coeffs.AGC_spatial_n_taps
|
dicklyon@525
|
303
|
dicklyon@525
|
304
|
dicklyon@525
|
305 %%
|
dicklyon@525
|
306 function [FIR, OK] = Design_FIR_coeffs(n_taps, var, mn, n_iter)
|
dicklyon@525
|
307 % function [FIR, OK] = Design_FIR_coeffs(n_taps, spread_sq, delay, n_iter)
|
dicklyon@525
|
308
|
dicklyon@525
|
309 % reduce mean and variance of smoothing distribution by n_iterations:
|
dicklyon@525
|
310 mn = mn / n_iter;
|
dicklyon@525
|
311 var = var / n_iter;
|
dicklyon@525
|
312 switch n_taps
|
dicklyon@525
|
313 case 3
|
dicklyon@525
|
314 % based on solving to match mean and variance of [a, 1-a-b, b]:
|
dicklyon@525
|
315 a = (var + mn*mn - mn) / 2;
|
dicklyon@525
|
316 b = (var + mn*mn + mn) / 2;
|
dicklyon@525
|
317 FIR = [a, 1 - a - b, b];
|
dicklyon@525
|
318 OK = FIR(2) >= 0.2;
|
dicklyon@525
|
319 case 5
|
dicklyon@525
|
320 % based on solving to match [a/2, a/2, 1-a-b, b/2, b/2]:
|
dicklyon@525
|
321 a = ((var + mn*mn)*2/5 - mn*2/3) / 2;
|
dicklyon@525
|
322 b = ((var + mn*mn)*2/5 + mn*2/3) / 2;
|
dicklyon@525
|
323 % first and last coeffs are implicitly duplicated to make 5-point FIR:
|
dicklyon@525
|
324 FIR = [a/2, 1 - a - b, b/2];
|
dicklyon@525
|
325 OK = FIR(2) >= 0.1;
|
dicklyon@525
|
326 otherwise
|
dicklyon@525
|
327 error('Bad n_taps in AGC_spatial_FIR');
|
dicklyon@525
|
328 end
|
dicklyon@523
|
329
|
tom@516
|
330
|
tom@516
|
331 %% the IHC design coeffs:
|
dicklyon@534
|
332 function IHC_coeffs = CARFAC_DesignIHC(IHC_params, fs, n_ch)
|
tom@516
|
333
|
tom@516
|
334 if IHC_params.just_hwr
|
tom@516
|
335 IHC_coeffs = struct('just_hwr', 1);
|
tom@516
|
336 IHC_coeffs.saturation_output = 10; % HACK: assume some max out
|
tom@516
|
337 else
|
tom@516
|
338 if IHC_params.one_cap
|
dicklyon@534
|
339 IHC_coeffs = struct( ...
|
dicklyon@534
|
340 'n_ch', n_ch, ...
|
tom@516
|
341 'just_hwr', 0, ...
|
tom@516
|
342 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
|
tom@516
|
343 'out_rate', 1 / (IHC_params.tau_out * fs), ...
|
tom@516
|
344 'in_rate', 1 / (IHC_params.tau_in * fs), ...
|
tom@516
|
345 'one_cap', IHC_params.one_cap);
|
tom@516
|
346 else
|
tom@516
|
347 IHC_coeffs = struct(...
|
dicklyon@534
|
348 'n_ch', n_ch, ...
|
tom@516
|
349 'just_hwr', 0, ...
|
tom@516
|
350 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
|
tom@516
|
351 'out1_rate', 1 / (IHC_params.tau1_out * fs), ...
|
tom@516
|
352 'in1_rate', 1 / (IHC_params.tau1_in * fs), ...
|
tom@516
|
353 'out2_rate', 1 / (IHC_params.tau2_out * fs), ...
|
tom@516
|
354 'in2_rate', 1 / (IHC_params.tau2_in * fs), ...
|
tom@516
|
355 'one_cap', IHC_params.one_cap);
|
tom@516
|
356 end
|
tom@516
|
357
|
tom@516
|
358 % run one channel to convergence to get rest state:
|
tom@516
|
359 IHC_coeffs.rest_output = 0;
|
tom@516
|
360 IHC_state = struct( ...
|
tom@516
|
361 'cap_voltage', 0, ...
|
tom@516
|
362 'cap1_voltage', 0, ...
|
tom@516
|
363 'cap2_voltage', 0, ...
|
tom@516
|
364 'lpf1_state', 0, ...
|
tom@516
|
365 'lpf2_state', 0, ...
|
tom@516
|
366 'ihc_accum', 0);
|
tom@516
|
367
|
dicklyon@534
|
368 IHC_in = 0; % the get the IHC output rest level
|
dicklyon@534
|
369 for k = 1:20000
|
dicklyon@534
|
370 [IHC_out, IHC_state] = CARFAC_IHC_Step(IHC_in, IHC_coeffs, IHC_state);
|
tom@516
|
371 end
|
tom@516
|
372
|
tom@516
|
373 IHC_coeffs.rest_output = IHC_out;
|
tom@516
|
374 IHC_coeffs.rest_cap = IHC_state.cap_voltage;
|
tom@516
|
375 IHC_coeffs.rest_cap1 = IHC_state.cap1_voltage;
|
tom@516
|
376 IHC_coeffs.rest_cap2 = IHC_state.cap2_voltage;
|
tom@516
|
377
|
tom@516
|
378 LARGE = 2;
|
tom@516
|
379 IHC_in = LARGE; % "Large" saturating input to IHC; make it alternate
|
dicklyon@534
|
380 for k = 1:20000
|
dicklyon@534
|
381 [IHC_out, IHC_state] = CARFAC_IHC_Step(IHC_in, IHC_coeffs, IHC_state);
|
tom@516
|
382 prev_IHC_out = IHC_out;
|
tom@516
|
383 IHC_in = -IHC_in;
|
tom@516
|
384 end
|
tom@516
|
385
|
tom@516
|
386 IHC_coeffs.saturation_output = (IHC_out + prev_IHC_out) / 2;
|
tom@516
|
387 end
|
tom@516
|
388
|
tom@516
|
389 %%
|
tom@516
|
390 % default design result, running this function with no args, should look
|
tom@516
|
391 % like this, before CARFAC_Init puts state storage into it:
|
tom@516
|
392 %
|
dicklyon@523
|
393 %
|
tom@516
|
394 % CF = CARFAC_Design
|
dicklyon@534
|
395 % CF.CAR_params
|
tom@516
|
396 % CF.AGC_params
|
dicklyon@534
|
397 % CF.CAR_coeffs
|
tom@516
|
398 % CF.AGC_coeffs
|
tom@516
|
399 % CF.IHC_coeffs
|
tom@516
|
400 %
|
dicklyon@530
|
401 % CF =
|
dicklyon@530
|
402 % fs: 22050
|
dicklyon@530
|
403 % max_channels_per_octave: 12.1873
|
dicklyon@534
|
404 % CAR_params: [1x1 struct]
|
dicklyon@530
|
405 % AGC_params: [1x1 struct]
|
dicklyon@530
|
406 % IHC_params: [1x1 struct]
|
dicklyon@530
|
407 % n_ch: 66
|
dicklyon@530
|
408 % pole_freqs: [66x1 double]
|
dicklyon@534
|
409 % CAR_coeffs: [1x1 struct]
|
dicklyon@530
|
410 % AGC_coeffs: [1x1 struct]
|
dicklyon@530
|
411 % IHC_coeffs: [1x1 struct]
|
dicklyon@534
|
412 % n_ears: 0
|
dicklyon@530
|
413 % ans =
|
dicklyon@530
|
414 % velocity_scale: 0.2000
|
dicklyon@530
|
415 % v_offset: 0.0100
|
dicklyon@530
|
416 % v2_corner: 0.2000
|
dicklyon@530
|
417 % v_damp_max: 0.0100
|
dicklyon@533
|
418 % min_zeta: 0.1000
|
dicklyon@530
|
419 % first_pole_theta: 2.6704
|
dicklyon@530
|
420 % zero_ratio: 1.4142
|
dicklyon@530
|
421 % high_f_damping_compression: 0.5000
|
dicklyon@530
|
422 % ERB_per_step: 0.5000
|
dicklyon@530
|
423 % min_pole_Hz: 30
|
dicklyon@530
|
424 % ans =
|
tom@516
|
425 % n_stages: 4
|
tom@516
|
426 % time_constants: [0.0020 0.0080 0.0320 0.1280]
|
tom@516
|
427 % AGC_stage_gain: 2
|
dicklyon@523
|
428 % decimation: [8 2 2 2]
|
dicklyon@530
|
429 % AGC1_scales: [1 2 4 6]
|
dicklyon@530
|
430 % AGC2_scales: [1.5000 3 6 9]
|
tom@516
|
431 % detect_scale: 0.1500
|
dicklyon@530
|
432 % AGC_mix_coeff: 0.5000
|
dicklyon@530
|
433 % ans =
|
tom@516
|
434 % velocity_scale: 0.2000
|
dicklyon@523
|
435 % v_offset: 0.0100
|
dicklyon@523
|
436 % v2_corner: 0.2000
|
dicklyon@523
|
437 % v_damp_max: 0.0100
|
dicklyon@530
|
438 % r1_coeffs: [66x1 double]
|
dicklyon@530
|
439 % a0_coeffs: [66x1 double]
|
dicklyon@530
|
440 % c0_coeffs: [66x1 double]
|
dicklyon@530
|
441 % h_coeffs: [66x1 double]
|
dicklyon@530
|
442 % g0_coeffs: [66x1 double]
|
dicklyon@530
|
443 % zr_coeffs: [66x1 double]
|
dicklyon@530
|
444 % ans =
|
dicklyon@523
|
445 % AGC_stage_gain: 2
|
dicklyon@523
|
446 % AGC_epsilon: [0.1659 0.0867 0.0443 0.0224]
|
dicklyon@523
|
447 % decimation: [8 2 2 2]
|
dicklyon@530
|
448 % AGC_polez1: [0.1627 0.2713 0.3944 0.4194]
|
dicklyon@530
|
449 % AGC_polez2: [0.2219 0.3165 0.4260 0.4414]
|
dicklyon@530
|
450 % AGC_spatial_iterations: [1 1 2 2]
|
dicklyon@523
|
451 % AGC_spatial_FIR: [3x4 double]
|
dicklyon@536
|
452 % AGC_spatial_n_taps: [3 5 5 5]
|
dicklyon@530
|
453 % AGC_mix_coeffs: [0 0.0454 0.0227 0.0113]
|
dicklyon@523
|
454 % AGC_gain: 15
|
dicklyon@523
|
455 % detect_scale: 0.0664
|
dicklyon@530
|
456 % ans =
|
dicklyon@523
|
457 % just_hwr: 0
|
tom@516
|
458 % lpf_coeff: 0.4327
|
tom@516
|
459 % out1_rate: 0.0023
|
tom@516
|
460 % in1_rate: 0.0023
|
tom@516
|
461 % out2_rate: 0.0091
|
tom@516
|
462 % in2_rate: 0.0091
|
tom@516
|
463 % one_cap: 0
|
tom@516
|
464 % rest_output: 0.0365
|
tom@516
|
465 % rest_cap: 0
|
tom@516
|
466 % rest_cap1: 0.9635
|
tom@516
|
467 % rest_cap2: 0.9269
|
dicklyon@523
|
468 % saturation_output: 0.1507
|
tom@516
|
469
|