annotate trunk/matlab/bmm/carfac/CARFAC_Design.m @ 563:fb602edc2d55

Separate the OHC nonlinear function into new file CARFAC_OHC_NLF.m. Update Design doc a bit. Add optional outputs and hacks that I used with Roy to look at distortion effects in OHC.
author dicklyon@google.com
date Sat, 12 May 2012 04:31:59 +0000
parents 3dff17554c6d
children 3e2e0ab4f708
rev   line source
tom@516 1 % Copyright 2012, Google, Inc.
tom@516 2 % Author: Richard F. Lyon
tom@516 3 %
tom@516 4 % This Matlab file is part of an implementation of Lyon's cochlear model:
tom@516 5 % "Cascade of Asymmetric Resonators with Fast-Acting Compression"
tom@516 6 % to supplement Lyon's upcoming book "Human and Machine Hearing"
tom@516 7 %
tom@516 8 % Licensed under the Apache License, Version 2.0 (the "License");
tom@516 9 % you may not use this file except in compliance with the License.
tom@516 10 % You may obtain a copy of the License at
tom@516 11 %
tom@516 12 % http://www.apache.org/licenses/LICENSE-2.0
tom@516 13 %
tom@516 14 % Unless required by applicable law or agreed to in writing, software
tom@516 15 % distributed under the License is distributed on an "AS IS" BASIS,
tom@516 16 % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
tom@516 17 % See the License for the specific language governing permissions and
tom@516 18 % limitations under the License.
tom@516 19
dicklyon@561 20 function CF = CARFAC_Design(n_ears, fs, CF_CAR_params, CF_AGC_params, CF_IHC_params)
dicklyon@534 21 % function CF = CARFAC_Design(fs, CF_CAR_params, ...
tom@516 22 % CF_AGC_params, ERB_break_freq, ERB_Q, CF_IHC_params)
tom@516 23 %
tom@516 24 % This function designs the CARFAC (Cascade of Asymmetric Resonators with
tom@516 25 % Fast-Acting Compression); that is, it take bundles of parameters and
tom@516 26 % computes all the filter coefficients needed to run it.
tom@516 27 %
tom@516 28 % fs is sample rate (per second)
dicklyon@534 29 % CF_CAR_params bundles all the pole-zero filter cascade parameters
tom@516 30 % CF_AGC_params bundles all the automatic gain control parameters
tom@516 31 % CF_IHC_params bundles all the inner hair cell parameters
tom@516 32 %
tom@516 33 % See other functions for designing and characterizing the CARFAC:
tom@516 34 % [naps, CF] = CARFAC_Run(CF, input_waves)
tom@516 35 % transfns = CARFAC_Transfer_Functions(CF, to_channels, from_channels)
tom@516 36 %
tom@516 37 % Defaults to Glasberg & Moore's ERB curve:
tom@516 38 % ERB_break_freq = 1000/4.37; % 228.833
tom@516 39 % ERB_Q = 1000/(24.7*4.37); % 9.2645
tom@516 40 %
tom@516 41 % All args are defaultable; for sample/default args see the code; they
tom@516 42 % make 96 channels at default fs = 22050, 114 channels at 44100.
tom@516 43
dicklyon@561 44 if nargin < 1
dicklyon@561 45 n_ears = 1; % if more than 1, make them identical channels;
dicklyon@561 46 % then modify the design if necessary for different reasons
dicklyon@561 47 end
dicklyon@561 48
dicklyon@561 49 if nargin < 2
dicklyon@561 50 fs = 22050;
dicklyon@561 51 end
dicklyon@561 52
dicklyon@561 53 if nargin < 3
dicklyon@561 54 CF_CAR_params = struct( ...
dicklyon@561 55 'velocity_scale', 0.2, ... % for the "cubic" velocity nonlinearity
dicklyon@563 56 'v_offset', 0.04, ... % offset gives a quadratic part
dicklyon@561 57 'v2_corner', 0.2, ... % corner for essential nonlin
dicklyon@561 58 'v_damp_max', 0.01, ... % damping delta damping from velocity nonlin
dicklyon@561 59 'min_zeta', 0.10, ... % minimum damping factor in mid-freq channels
dicklyon@561 60 'first_pole_theta', 0.85*pi, ...
dicklyon@561 61 'zero_ratio', sqrt(2), ... % how far zero is above pole
dicklyon@561 62 'high_f_damping_compression', 0.5, ... % 0 to 1 to compress zeta
dicklyon@561 63 'ERB_per_step', 0.5, ... % assume G&M's ERB formula
dicklyon@561 64 'min_pole_Hz', 30, ...
dicklyon@561 65 'ERB_break_freq', 165.3, ... % Greenwood map's break freq.
dicklyon@561 66 'ERB_Q', 1000/(24.7*4.37)); % Glasberg and Moore's high-cf ratio
dicklyon@561 67 end
dicklyon@561 68
dicklyon@553 69 if nargin < 4
dicklyon@561 70 CF_AGC_params = struct( ...
dicklyon@561 71 'n_stages', 4, ...
dicklyon@561 72 'time_constants', [1, 4, 16, 64]*0.002, ...
dicklyon@561 73 'AGC_stage_gain', 2, ... % gain from each stage to next slower stage
dicklyon@563 74 'decimation', [4, 2, 2, 2], ... % how often to update the AGC states
dicklyon@561 75 'AGC1_scales', [1.0, 1.4, 2.0, 2.8], ... % in units of channels
dicklyon@561 76 'AGC2_scales', [1.6, 2.25, 3.2, 4.5], ... % spread more toward base
dicklyon@561 77 'detect_scale', 0.25, ... % the desired damping range
dicklyon@561 78 'AGC_mix_coeff', 0.5);
dicklyon@561 79 end
dicklyon@561 80
dicklyon@561 81 if nargin < 5
tom@516 82 % HACK: these constant control the defaults
tom@516 83 one_cap = 0; % bool; 0 for new two-cap hack
tom@516 84 just_hwr = 0; % book; 0 for normal/fancy IHC; 1 for HWR
tom@516 85 if just_hwr
tom@516 86 CF_IHC_params = struct('just_hwr', 1); % just a simple HWR
tom@516 87 else
tom@516 88 if one_cap
tom@516 89 CF_IHC_params = struct( ...
dicklyon@523 90 'just_hwr', just_hwr, ... % not just a simple HWR
tom@516 91 'one_cap', one_cap, ... % bool; 0 for new two-cap hack
tom@516 92 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
tom@516 93 'tau_out', 0.0005, ... % depletion tau is pretty fast
tom@516 94 'tau_in', 0.010 ); % recovery tau is slower
tom@516 95 else
tom@516 96 CF_IHC_params = struct( ...
dicklyon@523 97 'just_hwr', just_hwr, ... % not just a simple HWR
tom@516 98 'one_cap', one_cap, ... % bool; 0 for new two-cap hack
tom@516 99 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
dicklyon@556 100 'tau1_out', 0.010, ... % depletion tau is pretty fast
tom@516 101 'tau1_in', 0.020, ... % recovery tau is slower
dicklyon@556 102 'tau2_out', 0.0025, ... % depletion tau is pretty fast
tom@516 103 'tau2_in', 0.005 ); % recovery tau is slower
tom@516 104 end
tom@516 105 end
tom@516 106 end
tom@516 107
tom@516 108
tom@516 109
tom@516 110 % first figure out how many filter stages (PZFC/CARFAC channels):
dicklyon@534 111 pole_Hz = CF_CAR_params.first_pole_theta * fs / (2*pi);
tom@516 112 n_ch = 0;
dicklyon@534 113 while pole_Hz > CF_CAR_params.min_pole_Hz
tom@516 114 n_ch = n_ch + 1;
dicklyon@534 115 pole_Hz = pole_Hz - CF_CAR_params.ERB_per_step * ...
dicklyon@553 116 ERB_Hz(pole_Hz, CF_CAR_params.ERB_break_freq, CF_CAR_params.ERB_Q);
tom@516 117 end
tom@516 118 % Now we have n_ch, the number of channels, so can make the array
tom@516 119 % and compute all the frequencies again to put into it:
tom@516 120 pole_freqs = zeros(n_ch, 1);
dicklyon@534 121 pole_Hz = CF_CAR_params.first_pole_theta * fs / (2*pi);
tom@516 122 for ch = 1:n_ch
tom@516 123 pole_freqs(ch) = pole_Hz;
dicklyon@534 124 pole_Hz = pole_Hz - CF_CAR_params.ERB_per_step * ...
dicklyon@553 125 ERB_Hz(pole_Hz, CF_CAR_params.ERB_break_freq, CF_CAR_params.ERB_Q);
tom@516 126 end
tom@516 127 % now we have n_ch, the number of channels, and pole_freqs array
tom@516 128
dicklyon@528 129 max_channels_per_octave = log(2) / log(pole_freqs(1)/pole_freqs(2));
dicklyon@528 130
dicklyon@561 131 % convert to include an ear_array, each w coeffs and state...
dicklyon@561 132 CAR_coeffs = CARFAC_DesignFilters(CF_CAR_params, fs, pole_freqs);
dicklyon@561 133 AGC_coeffs = CARFAC_DesignAGC(CF_AGC_params, fs, n_ch);
dicklyon@561 134 IHC_coeffs = CARFAC_DesignIHC(CF_IHC_params, fs, n_ch);
dicklyon@561 135 % copy same designed coeffs into each ear (can do differently in the
dicklyon@561 136 % future:
dicklyon@561 137 for ear = 1:n_ears
dicklyon@561 138 ears(ear).CAR_coeffs = CAR_coeffs;
dicklyon@561 139 ears(ear).AGC_coeffs = AGC_coeffs;
dicklyon@561 140 ears(ear).IHC_coeffs = IHC_coeffs;
dicklyon@561 141 end
dicklyon@561 142
tom@516 143 CF = struct( ...
tom@516 144 'fs', fs, ...
dicklyon@528 145 'max_channels_per_octave', max_channels_per_octave, ...
dicklyon@534 146 'CAR_params', CF_CAR_params, ...
tom@516 147 'AGC_params', CF_AGC_params, ...
tom@516 148 'IHC_params', CF_IHC_params, ...
tom@516 149 'n_ch', n_ch, ...
tom@516 150 'pole_freqs', pole_freqs, ...
dicklyon@561 151 'ears', ears, ...
dicklyon@561 152 'n_ears', n_ears );
tom@516 153
tom@516 154
dicklyon@534 155
tom@516 156 %% Design the filter coeffs:
dicklyon@534 157 function CAR_coeffs = CARFAC_DesignFilters(CAR_params, fs, pole_freqs)
tom@516 158
tom@516 159 n_ch = length(pole_freqs);
tom@516 160
tom@516 161 % the filter design coeffs:
tom@516 162
dicklyon@534 163 CAR_coeffs = struct( ...
dicklyon@534 164 'n_ch', n_ch, ...
dicklyon@534 165 'velocity_scale', CAR_params.velocity_scale, ...
dicklyon@534 166 'v_offset', CAR_params.v_offset, ...
dicklyon@534 167 'v2_corner', CAR_params.v2_corner, ...
dicklyon@534 168 'v_damp_max', CAR_params.v_damp_max ...
dicklyon@523 169 );
tom@516 170
dicklyon@559 171 % don't really need these zero arrays, but it's a clue to what fields
dicklyon@559 172 % and types are need in ohter language implementations:
dicklyon@534 173 CAR_coeffs.r1_coeffs = zeros(n_ch, 1);
dicklyon@534 174 CAR_coeffs.a0_coeffs = zeros(n_ch, 1);
dicklyon@534 175 CAR_coeffs.c0_coeffs = zeros(n_ch, 1);
dicklyon@534 176 CAR_coeffs.h_coeffs = zeros(n_ch, 1);
dicklyon@534 177 CAR_coeffs.g0_coeffs = zeros(n_ch, 1);
tom@516 178
tom@516 179 % zero_ratio comes in via h. In book's circuit D, zero_ratio is 1/sqrt(a),
tom@516 180 % and that a is here 1 / (1+f) where h = f*c.
tom@516 181 % solve for f: 1/zero_ratio^2 = 1 / (1+f)
tom@516 182 % zero_ratio^2 = 1+f => f = zero_ratio^2 - 1
dicklyon@534 183 f = CAR_params.zero_ratio^2 - 1; % nominally 1 for half-octave
tom@516 184
tom@516 185 % Make pole positions, s and c coeffs, h and g coeffs, etc.,
tom@516 186 % which mostly depend on the pole angle theta:
tom@516 187 theta = pole_freqs .* (2 * pi / fs);
tom@516 188
dicklyon@530 189 c0 = sin(theta);
dicklyon@530 190 a0 = cos(theta);
dicklyon@530 191
tom@516 192 % different possible interpretations for min-damping r:
dicklyon@534 193 % r = exp(-theta * CF_CAR_params.min_zeta).
dicklyon@530 194 % Compress theta to give somewhat higher Q at highest thetas:
dicklyon@534 195 ff = CAR_params.high_f_damping_compression; % 0 to 1; typ. 0.5
dicklyon@530 196 x = theta/pi;
dicklyon@530 197 zr_coeffs = pi * (x - ff * x.^3); % when ff is 0, this is just theta,
dicklyon@530 198 % and when ff is 1 it goes to zero at theta = pi.
dicklyon@534 199 CAR_coeffs.zr_coeffs = zr_coeffs; % how r relates to zeta
dicklyon@530 200
dicklyon@534 201 min_zeta = CAR_params.min_zeta;
dicklyon@533 202 % increase the min damping where channels are spaced out more:
dicklyon@553 203
dicklyon@553 204 min_zeta = min_zeta + 0.25*(ERB_Hz(pole_freqs, ...
dicklyon@553 205 CAR_params.ERB_break_freq, CAR_params.ERB_Q) ./ pole_freqs - min_zeta);
dicklyon@533 206 r1 = (1 - zr_coeffs .* min_zeta); % "1" for the min-damping condition
dicklyon@533 207
dicklyon@534 208 CAR_coeffs.r1_coeffs = r1;
tom@516 209
tom@516 210 % undamped coupled-form coefficients:
dicklyon@534 211 CAR_coeffs.a0_coeffs = a0;
dicklyon@534 212 CAR_coeffs.c0_coeffs = c0;
tom@516 213
tom@516 214 % the zeros follow via the h_coeffs
dicklyon@530 215 h = c0 .* f;
dicklyon@534 216 CAR_coeffs.h_coeffs = h;
tom@516 217
dicklyon@530 218 % for unity gain at min damping, radius r; only used in CARFAC_Init:
dicklyon@533 219 extra_damping = zeros(size(r1));
dicklyon@534 220 % this function needs to take CAR_coeffs even if we haven't finished
dicklyon@530 221 % constucting it by putting in the g0_coeffs:
dicklyon@534 222 CAR_coeffs.g0_coeffs = CARFAC_Stage_g(CAR_coeffs, extra_damping);
tom@516 223
tom@516 224
tom@516 225 %% the AGC design coeffs:
dicklyon@534 226 function AGC_coeffs = CARFAC_DesignAGC(AGC_params, fs, n_ch)
tom@516 227
dicklyon@534 228 n_AGC_stages = AGC_params.n_stages;
dicklyon@534 229 AGC_coeffs = struct( ...
dicklyon@534 230 'n_ch', n_ch, ...
dicklyon@534 231 'n_AGC_stages', n_AGC_stages, ...
dicklyon@534 232 'AGC_stage_gain', AGC_params.AGC_stage_gain);
tom@516 233
tom@516 234 % AGC1 pass is smoothing from base toward apex;
dicklyon@559 235 % AGC2 pass is back, which is done first now (in double exp. version)
tom@516 236 AGC1_scales = AGC_params.AGC1_scales;
tom@516 237 AGC2_scales = AGC_params.AGC2_scales;
tom@516 238
tom@516 239 AGC_coeffs.AGC_epsilon = zeros(1, n_AGC_stages); % the 1/(tau*fs) roughly
dicklyon@523 240 decim = 1;
dicklyon@523 241 AGC_coeffs.decimation = AGC_params.decimation;
dicklyon@523 242
dicklyon@523 243 total_DC_gain = 0;
tom@516 244 for stage = 1:n_AGC_stages
dicklyon@525 245 tau = AGC_params.time_constants(stage); % time constant in seconds
dicklyon@525 246 decim = decim * AGC_params.decimation(stage); % net decim to this stage
tom@516 247 % epsilon is how much new input to take at each update step:
tom@516 248 AGC_coeffs.AGC_epsilon(stage) = 1 - exp(-decim / (tau * fs));
dicklyon@523 249 % effective number of smoothings in a time constant:
dicklyon@525 250 ntimes = tau * (fs / decim); % typically 5 to 50
dicklyon@524 251
dicklyon@524 252 % decide on target spread (variance) and delay (mean) of impulse
dicklyon@524 253 % response as a distribution to be convolved ntimes:
dicklyon@525 254 % TODO (dicklyon): specify spread and delay instead of scales???
dicklyon@524 255 delay = (AGC2_scales(stage) - AGC1_scales(stage)) / ntimes;
dicklyon@524 256 spread_sq = (AGC1_scales(stage)^2 + AGC2_scales(stage)^2) / ntimes;
dicklyon@524 257
dicklyon@561 258 % get pole positions to better match intended spread and delay of
dicklyon@525 259 % [[geometric distribution]] in each direction (see wikipedia)
dicklyon@524 260 u = 1 + 1 / spread_sq; % these are based on off-line algebra hacking.
dicklyon@524 261 p = u - sqrt(u^2 - 1); % pole that would give spread if used twice.
dicklyon@524 262 dp = delay * (1 - 2*p +p^2)/2;
dicklyon@524 263 polez1 = p - dp;
dicklyon@524 264 polez2 = p + dp;
dicklyon@523 265 AGC_coeffs.AGC_polez1(stage) = polez1;
dicklyon@523 266 AGC_coeffs.AGC_polez2(stage) = polez2;
dicklyon@523 267
dicklyon@525 268 % try a 3- or 5-tap FIR as an alternative to the double exponential:
dicklyon@525 269 n_taps = 0;
dicklyon@525 270 FIR_OK = 0;
dicklyon@525 271 n_iterations = 1;
dicklyon@525 272 while ~FIR_OK
dicklyon@525 273 switch n_taps
dicklyon@525 274 case 0
dicklyon@525 275 % first attempt a 3-point FIR to apply once:
dicklyon@525 276 n_taps = 3;
dicklyon@525 277 case 3
dicklyon@525 278 % second time through, go wider but stick to 1 iteration
dicklyon@525 279 n_taps = 5;
dicklyon@525 280 case 5
dicklyon@525 281 % apply FIR multiple times instead of going wider:
dicklyon@525 282 n_iterations = n_iterations + 1;
dicklyon@525 283 if n_iterations > 16
dicklyon@525 284 error('Too many n_iterations in CARFAC_DesignAGC');
dicklyon@525 285 end
dicklyon@525 286 otherwise
dicklyon@525 287 % to do other n_taps would need changes in CARFAC_Spatial_Smooth
dicklyon@525 288 % and in Design_FIR_coeffs
dicklyon@525 289 error('Bad n_taps in CARFAC_DesignAGC');
dicklyon@523 290 end
dicklyon@525 291 [AGC_spatial_FIR, FIR_OK] = Design_FIR_coeffs( ...
dicklyon@525 292 n_taps, spread_sq, delay, n_iterations);
dicklyon@523 293 end
dicklyon@525 294 % when FIR_OK, store the resulting FIR design in coeffs:
dicklyon@523 295 AGC_coeffs.AGC_spatial_iterations(stage) = n_iterations;
dicklyon@523 296 AGC_coeffs.AGC_spatial_FIR(:,stage) = AGC_spatial_FIR;
dicklyon@536 297 AGC_coeffs.AGC_spatial_n_taps(stage) = n_taps;
dicklyon@523 298
dicklyon@525 299 % accumulate DC gains from all the stages, accounting for stage_gain:
dicklyon@523 300 total_DC_gain = total_DC_gain + AGC_params.AGC_stage_gain^(stage-1);
dicklyon@523 301
dicklyon@525 302 % TODO (dicklyon) -- is this the best binaural mixing plan?
dicklyon@523 303 if stage == 1
dicklyon@523 304 AGC_coeffs.AGC_mix_coeffs(stage) = 0;
dicklyon@523 305 else
dicklyon@523 306 AGC_coeffs.AGC_mix_coeffs(stage) = AGC_params.AGC_mix_coeff / ...
dicklyon@523 307 (tau * (fs / decim));
dicklyon@523 308 end
tom@516 309 end
tom@516 310
dicklyon@524 311 AGC_coeffs.AGC_gain = total_DC_gain;
dicklyon@523 312
dicklyon@556 313 % adjust the detect_scale by the total DC gain of the AGC filters:
dicklyon@556 314 AGC_coeffs.detect_scale = AGC_params.detect_scale / total_DC_gain;
dicklyon@556 315
dicklyon@525 316 % % print some results
dicklyon@536 317 AGC_coeffs
dicklyon@536 318 AGC_spatial_FIR = AGC_coeffs.AGC_spatial_FIR
dicklyon@536 319 AGC_spatial_iterations = AGC_coeffs.AGC_spatial_iterations
dicklyon@536 320 AGC_spatial_n_taps = AGC_coeffs.AGC_spatial_n_taps
dicklyon@525 321
dicklyon@525 322
dicklyon@525 323 %%
dicklyon@525 324 function [FIR, OK] = Design_FIR_coeffs(n_taps, var, mn, n_iter)
dicklyon@525 325 % function [FIR, OK] = Design_FIR_coeffs(n_taps, spread_sq, delay, n_iter)
dicklyon@525 326
dicklyon@525 327 % reduce mean and variance of smoothing distribution by n_iterations:
dicklyon@525 328 mn = mn / n_iter;
dicklyon@525 329 var = var / n_iter;
dicklyon@525 330 switch n_taps
dicklyon@525 331 case 3
dicklyon@525 332 % based on solving to match mean and variance of [a, 1-a-b, b]:
dicklyon@525 333 a = (var + mn*mn - mn) / 2;
dicklyon@525 334 b = (var + mn*mn + mn) / 2;
dicklyon@525 335 FIR = [a, 1 - a - b, b];
dicklyon@525 336 OK = FIR(2) >= 0.2;
dicklyon@525 337 case 5
dicklyon@525 338 % based on solving to match [a/2, a/2, 1-a-b, b/2, b/2]:
dicklyon@525 339 a = ((var + mn*mn)*2/5 - mn*2/3) / 2;
dicklyon@525 340 b = ((var + mn*mn)*2/5 + mn*2/3) / 2;
dicklyon@525 341 % first and last coeffs are implicitly duplicated to make 5-point FIR:
dicklyon@525 342 FIR = [a/2, 1 - a - b, b/2];
dicklyon@525 343 OK = FIR(2) >= 0.1;
dicklyon@525 344 otherwise
dicklyon@525 345 error('Bad n_taps in AGC_spatial_FIR');
dicklyon@525 346 end
dicklyon@523 347
tom@516 348
tom@516 349 %% the IHC design coeffs:
dicklyon@534 350 function IHC_coeffs = CARFAC_DesignIHC(IHC_params, fs, n_ch)
tom@516 351
tom@516 352 if IHC_params.just_hwr
dicklyon@561 353 IHC_coeffs = struct( ...
dicklyon@561 354 'n_ch', n_ch, ...
dicklyon@561 355 'just_hwr', 1);
tom@516 356 else
tom@516 357 if IHC_params.one_cap
dicklyon@556 358 ro = 1 / CARFAC_Detect(2); % output resistance
dicklyon@556 359 c = IHC_params.tau_out / ro;
dicklyon@556 360 ri = IHC_params.tau_in / c;
dicklyon@556 361 % to get steady-state average, double ro for 50% duty cycle
dicklyon@556 362 saturation_output = 1 / (2*ro + ri);
dicklyon@556 363 % also consider the zero-signal equilibrium:
dicklyon@556 364 r0 = 1 / CARFAC_Detect(0);
dicklyon@556 365 current = 1 / (ri + r0);
dicklyon@556 366 cap_voltage = 1 - current * ri;
dicklyon@534 367 IHC_coeffs = struct( ...
dicklyon@534 368 'n_ch', n_ch, ...
tom@516 369 'just_hwr', 0, ...
tom@516 370 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
dicklyon@556 371 'out_rate', ro / (IHC_params.tau_out * fs), ...
tom@516 372 'in_rate', 1 / (IHC_params.tau_in * fs), ...
dicklyon@556 373 'one_cap', IHC_params.one_cap, ...
dicklyon@556 374 'output_gain', 1/ (saturation_output - current), ...
dicklyon@556 375 'rest_output', current / (saturation_output - current), ...
dicklyon@556 376 'rest_cap', cap_voltage);
dicklyon@556 377 % one-channel state for testing/verification:
dicklyon@556 378 IHC_state = struct( ...
dicklyon@556 379 'cap_voltage', IHC_coeffs.rest_cap, ...
dicklyon@556 380 'lpf1_state', 0, ...
dicklyon@556 381 'lpf2_state', 0, ...
dicklyon@561 382 'ihc_accum', 0);
dicklyon@560 383 else
dicklyon@556 384 ro = 1 / CARFAC_Detect(2); % output resistance
dicklyon@556 385 c2 = IHC_params.tau2_out / ro;
dicklyon@556 386 r2 = IHC_params.tau2_in / c2;
dicklyon@556 387 c1 = IHC_params.tau1_out / r2;
dicklyon@556 388 r1 = IHC_params.tau1_in / c1;
dicklyon@556 389 % to get steady-state average, double ro for 50% duty cycle
dicklyon@556 390 saturation_output = 1 / (2*ro + r2 + r1);
dicklyon@556 391 % also consider the zero-signal equilibrium:
dicklyon@556 392 r0 = 1 / CARFAC_Detect(0);
dicklyon@556 393 current = 1 / (r1 + r2 + r0);
dicklyon@556 394 cap1_voltage = 1 - current * r1;
dicklyon@556 395 cap2_voltage = cap1_voltage - current * r2;
tom@516 396 IHC_coeffs = struct(...
dicklyon@534 397 'n_ch', n_ch, ...
tom@516 398 'just_hwr', 0, ...
tom@516 399 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
tom@516 400 'out1_rate', 1 / (IHC_params.tau1_out * fs), ...
tom@516 401 'in1_rate', 1 / (IHC_params.tau1_in * fs), ...
dicklyon@556 402 'out2_rate', ro / (IHC_params.tau2_out * fs), ...
tom@516 403 'in2_rate', 1 / (IHC_params.tau2_in * fs), ...
dicklyon@556 404 'one_cap', IHC_params.one_cap, ...
dicklyon@556 405 'output_gain', 1/ (saturation_output - current), ...
dicklyon@556 406 'rest_output', current / (saturation_output - current), ...
dicklyon@556 407 'rest_cap2', cap2_voltage, ...
dicklyon@556 408 'rest_cap1', cap1_voltage);
dicklyon@556 409 % one-channel state for testing/verification:
dicklyon@556 410 IHC_state = struct( ...
dicklyon@556 411 'cap1_voltage', IHC_coeffs.rest_cap1, ...
dicklyon@556 412 'cap2_voltage', IHC_coeffs.rest_cap2, ...
dicklyon@556 413 'lpf1_state', 0, ...
dicklyon@556 414 'lpf2_state', 0, ...
dicklyon@556 415 'ihc_accum', 0);
tom@516 416 end
tom@516 417 end
tom@516 418
tom@516 419 %%
tom@516 420 % default design result, running this function with no args, should look
tom@516 421 % like this, before CARFAC_Init puts state storage into it:
tom@516 422 %
dicklyon@523 423 %
tom@516 424 % CF = CARFAC_Design
dicklyon@534 425 % CF.CAR_params
tom@516 426 % CF.AGC_params
dicklyon@534 427 % CF.CAR_coeffs
tom@516 428 % CF.AGC_coeffs
tom@516 429 % CF.IHC_coeffs
dicklyon@561 430 % CF =
dicklyon@530 431 % fs: 22050
dicklyon@556 432 % max_channels_per_octave: 12.2709
dicklyon@556 433 % CAR_params: [1x1 struct]
dicklyon@530 434 % AGC_params: [1x1 struct]
dicklyon@530 435 % IHC_params: [1x1 struct]
dicklyon@556 436 % n_ch: 71
dicklyon@556 437 % pole_freqs: [71x1 double]
dicklyon@556 438 % CAR_coeffs: [1x1 struct]
dicklyon@530 439 % AGC_coeffs: [1x1 struct]
dicklyon@530 440 % IHC_coeffs: [1x1 struct]
dicklyon@534 441 % n_ears: 0
dicklyon@561 442 % ans =
dicklyon@530 443 % velocity_scale: 0.2000
dicklyon@530 444 % v_offset: 0.0100
dicklyon@530 445 % v2_corner: 0.2000
dicklyon@530 446 % v_damp_max: 0.0100
dicklyon@533 447 % min_zeta: 0.1000
dicklyon@530 448 % first_pole_theta: 2.6704
dicklyon@530 449 % zero_ratio: 1.4142
dicklyon@530 450 % high_f_damping_compression: 0.5000
dicklyon@530 451 % ERB_per_step: 0.5000
dicklyon@530 452 % min_pole_Hz: 30
dicklyon@556 453 % ERB_break_freq: 165.3000
dicklyon@556 454 % ERB_Q: 9.2645
dicklyon@561 455 % ans =
tom@516 456 % n_stages: 4
tom@516 457 % time_constants: [0.0020 0.0080 0.0320 0.1280]
tom@516 458 % AGC_stage_gain: 2
dicklyon@523 459 % decimation: [8 2 2 2]
dicklyon@556 460 % AGC1_scales: [1 1.4000 2 2.8000]
dicklyon@556 461 % AGC2_scales: [1.6000 2.2500 3.2000 4.5000]
dicklyon@556 462 % detect_scale: 0.2500
dicklyon@530 463 % AGC_mix_coeff: 0.5000
dicklyon@561 464 % ans =
dicklyon@556 465 % n_ch: 71
tom@516 466 % velocity_scale: 0.2000
dicklyon@523 467 % v_offset: 0.0100
dicklyon@523 468 % v2_corner: 0.2000
dicklyon@523 469 % v_damp_max: 0.0100
dicklyon@556 470 % r1_coeffs: [71x1 double]
dicklyon@556 471 % a0_coeffs: [71x1 double]
dicklyon@556 472 % c0_coeffs: [71x1 double]
dicklyon@556 473 % h_coeffs: [71x1 double]
dicklyon@556 474 % g0_coeffs: [71x1 double]
dicklyon@556 475 % zr_coeffs: [71x1 double]
dicklyon@561 476 % ans =
dicklyon@556 477 % n_ch: 71
dicklyon@556 478 % n_AGC_stages: 4
dicklyon@523 479 % AGC_stage_gain: 2
dicklyon@523 480 % AGC_epsilon: [0.1659 0.0867 0.0443 0.0224]
dicklyon@523 481 % decimation: [8 2 2 2]
dicklyon@556 482 % AGC_polez1: [0.1699 0.1780 0.1872 0.1903]
dicklyon@556 483 % AGC_polez2: [0.2388 0.2271 0.2216 0.2148]
dicklyon@556 484 % AGC_spatial_iterations: [1 1 1 1]
dicklyon@523 485 % AGC_spatial_FIR: [3x4 double]
dicklyon@556 486 % AGC_spatial_n_taps: [3 3 3 3]
dicklyon@530 487 % AGC_mix_coeffs: [0 0.0454 0.0227 0.0113]
dicklyon@523 488 % AGC_gain: 15
dicklyon@556 489 % detect_scale: 0.0167
dicklyon@561 490 % ans =
dicklyon@556 491 % n_ch: 71
dicklyon@556 492 % just_hwr: 0
dicklyon@556 493 % lpf_coeff: 0.4327
dicklyon@556 494 % out1_rate: 0.0045
dicklyon@556 495 % in1_rate: 0.0023
dicklyon@556 496 % out2_rate: 0.0267
dicklyon@556 497 % in2_rate: 0.0091
dicklyon@556 498 % one_cap: 0
dicklyon@556 499 % output_gain: 17.9162
dicklyon@556 500 % rest_output: 0.5240
dicklyon@556 501 % rest_cap2: 0.7421
dicklyon@556 502 % rest_cap1: 0.8281