c@27
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@27
|
2
|
c@27
|
3 /*
|
c@27
|
4 QM Vamp Plugin Set
|
c@27
|
5
|
c@27
|
6 Centre for Digital Music, Queen Mary, University of London.
|
c@135
|
7
|
c@135
|
8 This program is free software; you can redistribute it and/or
|
c@135
|
9 modify it under the terms of the GNU General Public License as
|
c@135
|
10 published by the Free Software Foundation; either version 2 of the
|
c@135
|
11 License, or (at your option) any later version. See the file
|
c@135
|
12 COPYING included with this distribution for more information.
|
c@27
|
13 */
|
c@27
|
14
|
c@27
|
15 #include "BeatTrack.h"
|
c@27
|
16
|
c@27
|
17 #include <dsp/onsets/DetectionFunction.h>
|
c@27
|
18 #include <dsp/onsets/PeakPicking.h>
|
c@27
|
19 #include <dsp/tempotracking/TempoTrack.h>
|
c@86
|
20 #include <dsp/tempotracking/TempoTrackV2.h>
|
c@27
|
21
|
c@27
|
22 using std::string;
|
c@27
|
23 using std::vector;
|
c@27
|
24 using std::cerr;
|
c@27
|
25 using std::endl;
|
c@27
|
26
|
c@86
|
27 float BeatTracker::m_stepSecs = 0.01161; // 512 samples at 44100
|
c@86
|
28
|
c@86
|
29 #define METHOD_OLD 0
|
c@86
|
30 #define METHOD_NEW 1
|
c@27
|
31
|
c@27
|
32 class BeatTrackerData
|
c@27
|
33 {
|
c@27
|
34 public:
|
c@27
|
35 BeatTrackerData(const DFConfig &config) : dfConfig(config) {
|
luis@144
|
36 df = new DetectionFunction(config);
|
c@27
|
37 }
|
c@27
|
38 ~BeatTrackerData() {
|
luis@144
|
39 delete df;
|
c@27
|
40 }
|
c@27
|
41 void reset() {
|
luis@144
|
42 delete df;
|
luis@144
|
43 df = new DetectionFunction(dfConfig);
|
luis@144
|
44 dfOutput.clear();
|
c@85
|
45 origin = Vamp::RealTime::zeroTime;
|
c@27
|
46 }
|
c@27
|
47
|
c@27
|
48 DFConfig dfConfig;
|
c@27
|
49 DetectionFunction *df;
|
c@27
|
50 vector<double> dfOutput;
|
c@85
|
51 Vamp::RealTime origin;
|
c@27
|
52 };
|
luis@144
|
53
|
c@27
|
54
|
c@27
|
55 BeatTracker::BeatTracker(float inputSampleRate) :
|
c@27
|
56 Vamp::Plugin(inputSampleRate),
|
c@27
|
57 m_d(0),
|
c@86
|
58 m_method(METHOD_NEW),
|
c@30
|
59 m_dfType(DF_COMPLEXSD),
|
luis@144
|
60 m_alpha(0.9), // MEPD new exposed parameter for beat tracker, default value = 0.9 (as old version)
|
c@148
|
61 m_tightness(4.),
|
luis@144
|
62 m_inputtempo(120.), // MEPD new exposed parameter for beat tracker, default value = 120. (as old version)
|
c@178
|
63 m_constraintempo(false), // MEPD new exposed parameter for beat tracker, default value = false (as old version)
|
luis@144
|
64 // calling the beat tracker with these default parameters will give the same output as the previous existing version
|
c@178
|
65 m_whiten(false)
|
luis@144
|
66
|
c@27
|
67 {
|
c@27
|
68 }
|
c@27
|
69
|
c@27
|
70 BeatTracker::~BeatTracker()
|
c@27
|
71 {
|
c@27
|
72 delete m_d;
|
c@27
|
73 }
|
c@27
|
74
|
c@27
|
75 string
|
c@27
|
76 BeatTracker::getIdentifier() const
|
c@27
|
77 {
|
c@27
|
78 return "qm-tempotracker";
|
c@27
|
79 }
|
c@27
|
80
|
c@27
|
81 string
|
c@27
|
82 BeatTracker::getName() const
|
c@27
|
83 {
|
c@27
|
84 return "Tempo and Beat Tracker";
|
c@27
|
85 }
|
c@27
|
86
|
c@27
|
87 string
|
c@27
|
88 BeatTracker::getDescription() const
|
c@27
|
89 {
|
c@27
|
90 return "Estimate beat locations and tempo";
|
c@27
|
91 }
|
c@27
|
92
|
c@27
|
93 string
|
c@27
|
94 BeatTracker::getMaker() const
|
c@27
|
95 {
|
c@50
|
96 return "Queen Mary, University of London";
|
c@27
|
97 }
|
c@27
|
98
|
c@27
|
99 int
|
c@27
|
100 BeatTracker::getPluginVersion() const
|
c@27
|
101 {
|
c@145
|
102 return 6;
|
c@27
|
103 }
|
c@27
|
104
|
c@27
|
105 string
|
c@27
|
106 BeatTracker::getCopyright() const
|
c@27
|
107 {
|
c@149
|
108 return "Plugin by Christian Landone and Matthew Davies. Copyright (c) 2006-2013 QMUL - All Rights Reserved";
|
c@27
|
109 }
|
c@27
|
110
|
c@27
|
111 BeatTracker::ParameterList
|
c@27
|
112 BeatTracker::getParameterDescriptors() const
|
c@27
|
113 {
|
c@27
|
114 ParameterList list;
|
c@27
|
115
|
c@27
|
116 ParameterDescriptor desc;
|
c@86
|
117
|
c@86
|
118 desc.identifier = "method";
|
c@86
|
119 desc.name = "Beat Tracking Method";
|
c@119
|
120 desc.description = "Basic method to use ";
|
c@86
|
121 desc.minValue = 0;
|
c@86
|
122 desc.maxValue = 1;
|
c@86
|
123 desc.defaultValue = METHOD_NEW;
|
c@86
|
124 desc.isQuantized = true;
|
c@86
|
125 desc.quantizeStep = 1;
|
c@86
|
126 desc.valueNames.push_back("Old");
|
c@86
|
127 desc.valueNames.push_back("New");
|
c@86
|
128 list.push_back(desc);
|
c@86
|
129
|
c@27
|
130 desc.identifier = "dftype";
|
c@27
|
131 desc.name = "Onset Detection Function Type";
|
c@27
|
132 desc.description = "Method used to calculate the onset detection function";
|
c@27
|
133 desc.minValue = 0;
|
c@31
|
134 desc.maxValue = 4;
|
c@27
|
135 desc.defaultValue = 3;
|
c@86
|
136 desc.valueNames.clear();
|
c@27
|
137 desc.valueNames.push_back("High-Frequency Content");
|
c@27
|
138 desc.valueNames.push_back("Spectral Difference");
|
c@27
|
139 desc.valueNames.push_back("Phase Deviation");
|
c@27
|
140 desc.valueNames.push_back("Complex Domain");
|
c@27
|
141 desc.valueNames.push_back("Broadband Energy Rise");
|
c@27
|
142 list.push_back(desc);
|
c@27
|
143
|
c@30
|
144 desc.identifier = "whiten";
|
c@30
|
145 desc.name = "Adaptive Whitening";
|
c@30
|
146 desc.description = "Normalize frequency bin magnitudes relative to recent peak levels";
|
c@30
|
147 desc.minValue = 0;
|
c@30
|
148 desc.maxValue = 1;
|
c@30
|
149 desc.defaultValue = 0;
|
c@30
|
150 desc.isQuantized = true;
|
c@30
|
151 desc.quantizeStep = 1;
|
c@30
|
152 desc.unit = "";
|
c@30
|
153 desc.valueNames.clear();
|
c@30
|
154 list.push_back(desc);
|
c@30
|
155
|
luis@144
|
156 // MEPD new exposed parameter - used in the dynamic programming part of the beat tracker
|
luis@144
|
157 //Alpha Parameter of Beat Tracker
|
luis@144
|
158 desc.identifier = "alpha";
|
luis@144
|
159 desc.name = "Alpha";
|
luis@144
|
160 desc.description = "Inertia - Flexibility Trade Off";
|
luis@144
|
161 desc.minValue = 0.1;
|
luis@144
|
162 desc.maxValue = 0.99;
|
luis@144
|
163 desc.defaultValue = 0.90;
|
luis@144
|
164 desc.unit = "";
|
luis@144
|
165 desc.isQuantized = false;
|
luis@144
|
166 list.push_back(desc);
|
luis@144
|
167
|
c@148
|
168 // We aren't exposing tightness as a parameter, it's fixed at 4
|
luis@144
|
169
|
luis@144
|
170 // MEPD new exposed parameter - used in the periodicity estimation
|
luis@144
|
171 //User input tempo
|
luis@144
|
172 desc.identifier = "inputtempo";
|
c@148
|
173 desc.name = "Tempo Hint";
|
c@151
|
174 desc.description = "User-defined tempo on which to centre the tempo preference function";
|
luis@144
|
175 desc.minValue = 50;
|
luis@144
|
176 desc.maxValue = 250;
|
luis@144
|
177 desc.defaultValue = 120;
|
luis@144
|
178 desc.unit = "BPM";
|
luis@144
|
179 desc.isQuantized = true;
|
luis@144
|
180 list.push_back(desc);
|
luis@144
|
181
|
luis@144
|
182 // MEPD new exposed parameter - used in periodicity estimation
|
luis@144
|
183 desc.identifier = "constraintempo";
|
luis@144
|
184 desc.name = "Constrain Tempo";
|
c@148
|
185 desc.description = "Constrain more tightly around the tempo hint, using a Gaussian weighting instead of Rayleigh";
|
luis@144
|
186 desc.minValue = 0;
|
luis@144
|
187 desc.maxValue = 1;
|
luis@144
|
188 desc.defaultValue = 0;
|
luis@144
|
189 desc.isQuantized = true;
|
luis@144
|
190 desc.quantizeStep = 1;
|
luis@144
|
191 desc.unit = "";
|
luis@144
|
192 desc.valueNames.clear();
|
luis@144
|
193 list.push_back(desc);
|
luis@144
|
194
|
luis@144
|
195
|
luis@144
|
196
|
c@27
|
197 return list;
|
c@27
|
198 }
|
c@27
|
199
|
c@27
|
200 float
|
c@27
|
201 BeatTracker::getParameter(std::string name) const
|
c@27
|
202 {
|
c@27
|
203 if (name == "dftype") {
|
c@27
|
204 switch (m_dfType) {
|
c@27
|
205 case DF_HFC: return 0;
|
c@27
|
206 case DF_SPECDIFF: return 1;
|
c@27
|
207 case DF_PHASEDEV: return 2;
|
c@27
|
208 default: case DF_COMPLEXSD: return 3;
|
c@27
|
209 case DF_BROADBAND: return 4;
|
c@27
|
210 }
|
c@86
|
211 } else if (name == "method") {
|
c@86
|
212 return m_method;
|
c@30
|
213 } else if (name == "whiten") {
|
luis@144
|
214 return m_whiten ? 1.0 : 0.0;
|
luis@144
|
215 } else if (name == "alpha") {
|
luis@144
|
216 return m_alpha;
|
luis@144
|
217 } else if (name == "inputtempo") {
|
luis@144
|
218 return m_inputtempo;
|
luis@144
|
219 } else if (name == "constraintempo") {
|
luis@144
|
220 return m_constraintempo ? 1.0 : 0.0;
|
c@27
|
221 }
|
c@27
|
222 return 0.0;
|
c@27
|
223 }
|
c@27
|
224
|
c@27
|
225 void
|
c@27
|
226 BeatTracker::setParameter(std::string name, float value)
|
c@27
|
227 {
|
c@27
|
228 if (name == "dftype") {
|
c@27
|
229 switch (lrintf(value)) {
|
c@27
|
230 case 0: m_dfType = DF_HFC; break;
|
c@27
|
231 case 1: m_dfType = DF_SPECDIFF; break;
|
c@27
|
232 case 2: m_dfType = DF_PHASEDEV; break;
|
c@27
|
233 default: case 3: m_dfType = DF_COMPLEXSD; break;
|
c@27
|
234 case 4: m_dfType = DF_BROADBAND; break;
|
c@27
|
235 }
|
c@86
|
236 } else if (name == "method") {
|
c@86
|
237 m_method = lrintf(value);
|
c@30
|
238 } else if (name == "whiten") {
|
c@30
|
239 m_whiten = (value > 0.5);
|
luis@144
|
240 } else if (name == "alpha") {
|
luis@144
|
241 m_alpha = value;
|
luis@144
|
242 } else if (name == "inputtempo") {
|
luis@144
|
243 m_inputtempo = value;
|
luis@144
|
244 } else if (name == "constraintempo") {
|
luis@144
|
245 m_constraintempo = (value > 0.5);
|
c@27
|
246 }
|
c@27
|
247 }
|
c@27
|
248
|
c@27
|
249 bool
|
c@27
|
250 BeatTracker::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
c@27
|
251 {
|
c@27
|
252 if (m_d) {
|
luis@144
|
253 delete m_d;
|
luis@144
|
254 m_d = 0;
|
c@27
|
255 }
|
c@27
|
256
|
c@27
|
257 if (channels < getMinChannelCount() ||
|
luis@144
|
258 channels > getMaxChannelCount()) {
|
c@27
|
259 std::cerr << "BeatTracker::initialise: Unsupported channel count: "
|
c@27
|
260 << channels << std::endl;
|
c@27
|
261 return false;
|
c@27
|
262 }
|
c@27
|
263
|
c@28
|
264 if (stepSize != getPreferredStepSize()) {
|
c@28
|
265 std::cerr << "ERROR: BeatTracker::initialise: Unsupported step size for this sample rate: "
|
c@28
|
266 << stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
|
c@27
|
267 return false;
|
c@27
|
268 }
|
c@27
|
269
|
c@28
|
270 if (blockSize != getPreferredBlockSize()) {
|
c@29
|
271 std::cerr << "WARNING: BeatTracker::initialise: Sub-optimal block size for this sample rate: "
|
c@28
|
272 << blockSize << " (wanted " << getPreferredBlockSize() << ")" << std::endl;
|
c@28
|
273 // return false;
|
c@27
|
274 }
|
c@27
|
275
|
c@27
|
276 DFConfig dfConfig;
|
c@27
|
277 dfConfig.DFType = m_dfType;
|
c@27
|
278 dfConfig.stepSize = stepSize;
|
c@27
|
279 dfConfig.frameLength = blockSize;
|
c@27
|
280 dfConfig.dbRise = 3;
|
c@30
|
281 dfConfig.adaptiveWhitening = m_whiten;
|
c@30
|
282 dfConfig.whiteningRelaxCoeff = -1;
|
c@30
|
283 dfConfig.whiteningFloor = -1;
|
luis@144
|
284
|
c@27
|
285 m_d = new BeatTrackerData(dfConfig);
|
c@27
|
286 return true;
|
c@27
|
287 }
|
c@27
|
288
|
c@27
|
289 void
|
c@27
|
290 BeatTracker::reset()
|
c@27
|
291 {
|
c@27
|
292 if (m_d) m_d->reset();
|
c@27
|
293 }
|
c@27
|
294
|
c@27
|
295 size_t
|
c@27
|
296 BeatTracker::getPreferredStepSize() const
|
c@27
|
297 {
|
c@27
|
298 size_t step = size_t(m_inputSampleRate * m_stepSecs + 0.0001);
|
c@27
|
299 // std::cerr << "BeatTracker::getPreferredStepSize: input sample rate is " << m_inputSampleRate << ", step size is " << step << std::endl;
|
c@27
|
300 return step;
|
c@27
|
301 }
|
c@27
|
302
|
c@27
|
303 size_t
|
c@27
|
304 BeatTracker::getPreferredBlockSize() const
|
c@27
|
305 {
|
c@28
|
306 size_t theoretical = getPreferredStepSize() * 2;
|
c@28
|
307
|
c@52
|
308 // I think this is not necessarily going to be a power of two, and
|
c@52
|
309 // the host might have a problem with that, but I'm not sure we
|
c@52
|
310 // can do much about it here
|
c@28
|
311 return theoretical;
|
c@27
|
312 }
|
c@27
|
313
|
c@27
|
314 BeatTracker::OutputList
|
c@27
|
315 BeatTracker::getOutputDescriptors() const
|
c@27
|
316 {
|
c@27
|
317 OutputList list;
|
c@27
|
318
|
c@27
|
319 OutputDescriptor beat;
|
c@27
|
320 beat.identifier = "beats";
|
c@27
|
321 beat.name = "Beats";
|
c@27
|
322 beat.description = "Estimated metrical beat locations";
|
c@27
|
323 beat.unit = "";
|
c@27
|
324 beat.hasFixedBinCount = true;
|
c@27
|
325 beat.binCount = 0;
|
c@27
|
326 beat.sampleType = OutputDescriptor::VariableSampleRate;
|
c@27
|
327 beat.sampleRate = 1.0 / m_stepSecs;
|
c@27
|
328
|
c@27
|
329 OutputDescriptor df;
|
c@27
|
330 df.identifier = "detection_fn";
|
c@27
|
331 df.name = "Onset Detection Function";
|
c@27
|
332 df.description = "Probability function of note onset likelihood";
|
c@27
|
333 df.unit = "";
|
c@27
|
334 df.hasFixedBinCount = true;
|
c@27
|
335 df.binCount = 1;
|
c@27
|
336 df.hasKnownExtents = false;
|
c@27
|
337 df.isQuantized = false;
|
c@27
|
338 df.sampleType = OutputDescriptor::OneSamplePerStep;
|
c@27
|
339
|
c@27
|
340 OutputDescriptor tempo;
|
c@27
|
341 tempo.identifier = "tempo";
|
c@27
|
342 tempo.name = "Tempo";
|
c@27
|
343 tempo.description = "Locked tempo estimates";
|
c@27
|
344 tempo.unit = "bpm";
|
c@27
|
345 tempo.hasFixedBinCount = true;
|
c@27
|
346 tempo.binCount = 1;
|
c@31
|
347 tempo.hasKnownExtents = false;
|
c@31
|
348 tempo.isQuantized = false;
|
c@27
|
349 tempo.sampleType = OutputDescriptor::VariableSampleRate;
|
c@27
|
350 tempo.sampleRate = 1.0 / m_stepSecs;
|
c@27
|
351
|
c@27
|
352 list.push_back(beat);
|
c@27
|
353 list.push_back(df);
|
c@27
|
354 list.push_back(tempo);
|
c@27
|
355
|
c@27
|
356 return list;
|
c@27
|
357 }
|
c@27
|
358
|
c@27
|
359 BeatTracker::FeatureSet
|
c@27
|
360 BeatTracker::process(const float *const *inputBuffers,
|
c@85
|
361 Vamp::RealTime timestamp)
|
c@27
|
362 {
|
c@27
|
363 if (!m_d) {
|
luis@144
|
364 cerr << "ERROR: BeatTracker::process: "
|
luis@144
|
365 << "BeatTracker has not been initialised"
|
luis@144
|
366 << endl;
|
luis@144
|
367 return FeatureSet();
|
c@27
|
368 }
|
c@27
|
369
|
c@153
|
370 size_t len = m_d->dfConfig.frameLength / 2 + 1;
|
c@27
|
371
|
c@153
|
372 double *reals = new double[len];
|
c@153
|
373 double *imags = new double[len];
|
c@27
|
374
|
c@27
|
375 // We only support a single input channel
|
c@27
|
376
|
c@27
|
377 for (size_t i = 0; i < len; ++i) {
|
c@153
|
378 reals[i] = inputBuffers[0][i*2];
|
c@153
|
379 imags[i] = inputBuffers[0][i*2+1];
|
c@27
|
380 }
|
c@27
|
381
|
c@153
|
382 double output = m_d->df->processFrequencyDomain(reals, imags);
|
c@27
|
383
|
c@153
|
384 delete[] reals;
|
c@153
|
385 delete[] imags;
|
c@27
|
386
|
c@85
|
387 if (m_d->dfOutput.empty()) m_d->origin = timestamp;
|
c@85
|
388
|
c@27
|
389 m_d->dfOutput.push_back(output);
|
c@27
|
390
|
c@27
|
391 FeatureSet returnFeatures;
|
c@27
|
392
|
c@27
|
393 Feature feature;
|
c@27
|
394 feature.hasTimestamp = false;
|
c@27
|
395 feature.values.push_back(output);
|
c@27
|
396
|
c@27
|
397 returnFeatures[1].push_back(feature); // detection function is output 1
|
c@27
|
398 return returnFeatures;
|
c@27
|
399 }
|
c@27
|
400
|
c@27
|
401 BeatTracker::FeatureSet
|
c@27
|
402 BeatTracker::getRemainingFeatures()
|
c@27
|
403 {
|
c@27
|
404 if (!m_d) {
|
luis@144
|
405 cerr << "ERROR: BeatTracker::getRemainingFeatures: "
|
luis@144
|
406 << "BeatTracker has not been initialised"
|
luis@144
|
407 << endl;
|
luis@144
|
408 return FeatureSet();
|
c@27
|
409 }
|
c@27
|
410
|
c@86
|
411 if (m_method == METHOD_OLD) return beatTrackOld();
|
c@86
|
412 else return beatTrackNew();
|
c@86
|
413 }
|
c@86
|
414
|
c@86
|
415 BeatTracker::FeatureSet
|
c@86
|
416 BeatTracker::beatTrackOld()
|
c@86
|
417 {
|
c@27
|
418 double aCoeffs[] = { 1.0000, -0.5949, 0.2348 };
|
c@27
|
419 double bCoeffs[] = { 0.1600, 0.3200, 0.1600 };
|
c@27
|
420
|
c@27
|
421 TTParams ttParams;
|
c@27
|
422 ttParams.winLength = 512;
|
c@27
|
423 ttParams.lagLength = 128;
|
c@27
|
424 ttParams.LPOrd = 2;
|
c@27
|
425 ttParams.LPACoeffs = aCoeffs;
|
c@27
|
426 ttParams.LPBCoeffs = bCoeffs;
|
c@27
|
427 ttParams.alpha = 9;
|
c@27
|
428 ttParams.WinT.post = 8;
|
c@27
|
429 ttParams.WinT.pre = 7;
|
c@27
|
430
|
c@27
|
431 TempoTrack tempoTracker(ttParams);
|
c@27
|
432
|
c@87
|
433 vector<double> tempi;
|
c@87
|
434 vector<int> beats = tempoTracker.process(m_d->dfOutput, &tempi);
|
c@27
|
435
|
c@27
|
436 FeatureSet returnFeatures;
|
c@27
|
437
|
c@27
|
438 char label[100];
|
c@27
|
439
|
c@27
|
440 for (size_t i = 0; i < beats.size(); ++i) {
|
c@27
|
441
|
luis@144
|
442 size_t frame = beats[i] * m_d->dfConfig.stepSize;
|
c@27
|
443
|
luis@144
|
444 Feature feature;
|
luis@144
|
445 feature.hasTimestamp = true;
|
luis@144
|
446 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
|
luis@144
|
447 (frame, lrintf(m_inputSampleRate));
|
c@27
|
448
|
luis@144
|
449 float bpm = 0.0;
|
luis@144
|
450 int frameIncrement = 0;
|
c@27
|
451
|
luis@144
|
452 if (i < beats.size() - 1) {
|
c@27
|
453
|
luis@144
|
454 frameIncrement = (beats[i+1] - beats[i]) * m_d->dfConfig.stepSize;
|
c@27
|
455
|
luis@144
|
456 // one beat is frameIncrement frames, so there are
|
luis@144
|
457 // samplerate/frameIncrement bps, so
|
luis@144
|
458 // 60*samplerate/frameIncrement bpm
|
c@27
|
459
|
luis@144
|
460 if (frameIncrement > 0) {
|
luis@144
|
461 bpm = (60.0 * m_inputSampleRate) / frameIncrement;
|
luis@144
|
462 bpm = int(bpm * 100.0 + 0.5) / 100.0;
|
c@27
|
463 sprintf(label, "%.2f bpm", bpm);
|
c@27
|
464 feature.label = label;
|
luis@144
|
465 }
|
luis@144
|
466 }
|
c@27
|
467
|
luis@144
|
468 returnFeatures[0].push_back(feature); // beats are output 0
|
c@27
|
469 }
|
c@27
|
470
|
c@27
|
471 double prevTempo = 0.0;
|
c@27
|
472
|
c@87
|
473 for (size_t i = 0; i < tempi.size(); ++i) {
|
c@27
|
474
|
c@27
|
475 size_t frame = i * m_d->dfConfig.stepSize * ttParams.lagLength;
|
c@27
|
476
|
c@27
|
477 // std::cerr << "unit " << i << ", step size " << m_d->dfConfig.stepSize << ", hop " << ttParams.lagLength << ", frame = " << frame << std::endl;
|
luis@144
|
478
|
c@87
|
479 if (tempi[i] > 1 && int(tempi[i] * 100) != int(prevTempo * 100)) {
|
c@27
|
480 Feature feature;
|
c@27
|
481 feature.hasTimestamp = true;
|
c@85
|
482 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
|
c@27
|
483 (frame, lrintf(m_inputSampleRate));
|
c@87
|
484 feature.values.push_back(tempi[i]);
|
c@87
|
485 sprintf(label, "%.2f bpm", tempi[i]);
|
c@27
|
486 feature.label = label;
|
c@27
|
487 returnFeatures[2].push_back(feature); // tempo is output 2
|
c@87
|
488 prevTempo = tempi[i];
|
c@27
|
489 }
|
c@27
|
490 }
|
c@27
|
491
|
c@27
|
492 return returnFeatures;
|
c@27
|
493 }
|
c@27
|
494
|
c@86
|
495 BeatTracker::FeatureSet
|
c@86
|
496 BeatTracker::beatTrackNew()
|
c@86
|
497 {
|
c@86
|
498 vector<double> df;
|
c@86
|
499 vector<double> beatPeriod;
|
c@87
|
500 vector<double> tempi;
|
c@86
|
501
|
c@120
|
502 size_t nonZeroCount = m_d->dfOutput.size();
|
c@120
|
503 while (nonZeroCount > 0) {
|
c@120
|
504 if (m_d->dfOutput[nonZeroCount-1] > 0.0) {
|
c@120
|
505 break;
|
c@120
|
506 }
|
c@120
|
507 --nonZeroCount;
|
c@120
|
508 }
|
c@120
|
509
|
c@147
|
510 // std::cerr << "Note: nonZeroCount was " << m_d->dfOutput.size() << ", is now " << nonZeroCount << std::endl;
|
c@120
|
511
|
c@120
|
512 for (size_t i = 2; i < nonZeroCount; ++i) { // discard first two elts
|
c@86
|
513 df.push_back(m_d->dfOutput[i]);
|
c@86
|
514 beatPeriod.push_back(0.0);
|
c@86
|
515 }
|
c@86
|
516 if (df.empty()) return FeatureSet();
|
c@86
|
517
|
c@88
|
518 TempoTrackV2 tt(m_inputSampleRate, m_d->dfConfig.stepSize);
|
c@86
|
519
|
luis@144
|
520
|
luis@144
|
521 // MEPD - note this function is now passed 2 new parameters, m_inputtempo and m_constraintempo
|
luis@144
|
522 tt.calculateBeatPeriod(df, beatPeriod, tempi, m_inputtempo, m_constraintempo);
|
c@86
|
523
|
c@86
|
524 vector<double> beats;
|
luis@144
|
525
|
luis@144
|
526 // MEPD - note this function is now passed 2 new parameters, m_alpha and m_tightness
|
luis@144
|
527 tt.calculateBeats(df, beatPeriod, beats, m_alpha, m_tightness);
|
luis@144
|
528
|
c@86
|
529 FeatureSet returnFeatures;
|
c@86
|
530
|
c@86
|
531 char label[100];
|
c@86
|
532
|
c@86
|
533 for (size_t i = 0; i < beats.size(); ++i) {
|
c@86
|
534
|
luis@144
|
535 size_t frame = beats[i] * m_d->dfConfig.stepSize;
|
c@86
|
536
|
luis@144
|
537 Feature feature;
|
luis@144
|
538 feature.hasTimestamp = true;
|
luis@144
|
539 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
|
luis@144
|
540 (frame, lrintf(m_inputSampleRate));
|
c@86
|
541
|
luis@144
|
542 float bpm = 0.0;
|
luis@144
|
543 int frameIncrement = 0;
|
c@86
|
544
|
luis@144
|
545 if (i+1 < beats.size()) {
|
c@86
|
546
|
luis@144
|
547 frameIncrement = (beats[i+1] - beats[i]) * m_d->dfConfig.stepSize;
|
c@86
|
548
|
luis@144
|
549 // one beat is frameIncrement frames, so there are
|
luis@144
|
550 // samplerate/frameIncrement bps, so
|
luis@144
|
551 // 60*samplerate/frameIncrement bpm
|
luis@144
|
552
|
luis@144
|
553 if (frameIncrement > 0) {
|
luis@144
|
554 bpm = (60.0 * m_inputSampleRate) / frameIncrement;
|
luis@144
|
555 bpm = int(bpm * 100.0 + 0.5) / 100.0;
|
c@86
|
556 sprintf(label, "%.2f bpm", bpm);
|
c@86
|
557 feature.label = label;
|
luis@144
|
558 }
|
luis@144
|
559 }
|
c@86
|
560
|
luis@144
|
561 returnFeatures[0].push_back(feature); // beats are output 0
|
c@86
|
562 }
|
c@86
|
563
|
c@87
|
564 double prevTempo = 0.0;
|
c@87
|
565
|
c@87
|
566 for (size_t i = 0; i < tempi.size(); ++i) {
|
c@87
|
567
|
luis@144
|
568 size_t frame = i * m_d->dfConfig.stepSize;
|
luis@144
|
569
|
c@87
|
570 if (tempi[i] > 1 && int(tempi[i] * 100) != int(prevTempo * 100)) {
|
c@87
|
571 Feature feature;
|
c@87
|
572 feature.hasTimestamp = true;
|
c@87
|
573 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
|
c@87
|
574 (frame, lrintf(m_inputSampleRate));
|
c@87
|
575 feature.values.push_back(tempi[i]);
|
c@87
|
576 sprintf(label, "%.2f bpm", tempi[i]);
|
c@87
|
577 feature.label = label;
|
c@87
|
578 returnFeatures[2].push_back(feature); // tempo is output 2
|
c@87
|
579 prevTempo = tempi[i];
|
c@87
|
580 }
|
c@87
|
581 }
|
c@87
|
582
|
c@86
|
583 return returnFeatures;
|
c@86
|
584 }
|