annotate dsp/transforms/FFT.cpp @ 114:f6ccde089491 pvoc

Tidy real-to-complex FFT -- forward and inverse have different arguments, so make them separate functions; document
author Chris Cannam
date Wed, 02 Oct 2013 15:04:38 +0100
parents e5907ae6de17
children 6ec45e85ed81
rev   line source
cannam@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@0 2
cannam@0 3 /*
cannam@0 4 QM DSP Library
cannam@0 5
cannam@0 6 Centre for Digital Music, Queen Mary, University of London.
cannam@0 7 This file is based on Don Cross's public domain FFT implementation.
cannam@0 8 */
cannam@0 9
cannam@0 10 #include "FFT.h"
cannam@55 11
cannam@55 12 #include "maths/MathUtilities.h"
cannam@55 13
cannam@0 14 #include <cmath>
cannam@0 15
cannam@55 16 #include <iostream>
cannam@55 17
Chris@114 18 FFT::FFT(int n) :
Chris@114 19 m_n(n)
cannam@0 20 {
cannam@64 21 if( !MathUtilities::isPowerOfTwo(m_n) )
cannam@64 22 {
cannam@64 23 std::cerr << "ERROR: FFT: Non-power-of-two FFT size "
cannam@64 24 << m_n << " not supported in this implementation"
cannam@64 25 << std::endl;
cannam@64 26 return;
cannam@64 27 }
cannam@0 28 }
cannam@0 29
cannam@0 30 FFT::~FFT()
cannam@0 31 {
cannam@0 32
cannam@0 33 }
cannam@0 34
Chris@114 35 FFTReal::FFTReal(int n) :
cannam@64 36 m_n(n),
Chris@114 37 m_fft(new FFT(n)),
Chris@114 38 m_r(new double[n]),
Chris@114 39 m_i(new double[n]),
Chris@114 40 m_discard(new double[n])
cannam@0 41 {
Chris@114 42 for (int i = 0; i < n; ++i) {
Chris@114 43 m_r[i] = 0;
Chris@114 44 m_i[i] = 0;
Chris@114 45 m_discard[i] = 0;
Chris@114 46 }
cannam@64 47 }
cannam@0 48
cannam@64 49 FFTReal::~FFTReal()
cannam@64 50 {
Chris@114 51 delete m_fft;
Chris@114 52 delete[] m_discard;
Chris@114 53 delete[] m_r;
Chris@114 54 delete[] m_i;
cannam@64 55 }
cannam@64 56
cannam@64 57 void
Chris@114 58 FFTReal::forward(const double *realIn,
cannam@64 59 double *realOut, double *imagOut)
cannam@64 60 {
Chris@114 61 m_fft->process(false, realIn, 0, realOut, imagOut);
cannam@64 62 }
cannam@64 63
Chris@114 64 void
Chris@114 65 FFTReal::inverse(const double *realIn, const double *imagIn,
Chris@114 66 double *realOut)
Chris@114 67 {
Chris@114 68 for (int i = 0; i < m_n/2 + 1; ++i) {
Chris@114 69 m_r[i] = realIn[i];
Chris@114 70 m_i[i] = imagIn[i];
Chris@114 71 if (i > 0 && i < m_n/2) {
Chris@114 72 m_r[m_n - i] = realIn[i];
Chris@114 73 m_i[m_n - i] = -imagIn[i];
Chris@114 74 }
Chris@114 75 }
Chris@114 76 m_fft->process(true, m_r, m_i, realOut, m_discard);
Chris@114 77 }
Chris@114 78
Chris@114 79 static int numberOfBitsNeeded(int p_nSamples)
cannam@64 80 {
cannam@64 81 int i;
cannam@64 82
cannam@64 83 if( p_nSamples < 2 )
cannam@64 84 {
cannam@64 85 return 0;
cannam@64 86 }
cannam@64 87
cannam@64 88 for ( i=0; ; i++ )
cannam@64 89 {
cannam@64 90 if( p_nSamples & (1 << i) ) return i;
cannam@64 91 }
cannam@64 92 }
cannam@64 93
Chris@114 94 static int reverseBits(int p_nIndex, int p_nBits)
cannam@64 95 {
Chris@114 96 int i, rev;
cannam@64 97
cannam@64 98 for(i=rev=0; i < p_nBits; i++)
cannam@64 99 {
cannam@64 100 rev = (rev << 1) | (p_nIndex & 1);
cannam@64 101 p_nIndex >>= 1;
cannam@64 102 }
cannam@64 103
cannam@64 104 return rev;
cannam@64 105 }
cannam@64 106
cannam@64 107 void
cannam@64 108 FFT::process(bool p_bInverseTransform,
cannam@64 109 const double *p_lpRealIn, const double *p_lpImagIn,
cannam@64 110 double *p_lpRealOut, double *p_lpImagOut)
cannam@64 111 {
cannam@66 112 if (!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return;
cannam@66 113
cannam@66 114 // std::cerr << "FFT::process(" << m_n << "," << p_bInverseTransform << ")" << std::endl;
cannam@0 115
Chris@114 116 int NumBits;
Chris@114 117 int i, j, k, n;
Chris@114 118 int BlockSize, BlockEnd;
cannam@0 119
cannam@0 120 double angle_numerator = 2.0 * M_PI;
cannam@0 121 double tr, ti;
cannam@0 122
cannam@64 123 if( !MathUtilities::isPowerOfTwo(m_n) )
cannam@0 124 {
cannam@55 125 std::cerr << "ERROR: FFT::process: Non-power-of-two FFT size "
cannam@64 126 << m_n << " not supported in this implementation"
cannam@55 127 << std::endl;
cannam@0 128 return;
cannam@0 129 }
cannam@0 130
cannam@0 131 if( p_bInverseTransform ) angle_numerator = -angle_numerator;
cannam@0 132
cannam@64 133 NumBits = numberOfBitsNeeded ( m_n );
cannam@0 134
cannam@0 135
Chris@114 136
cannam@64 137 for( i=0; i < m_n; i++ )
cannam@0 138 {
cannam@0 139 j = reverseBits ( i, NumBits );
cannam@0 140 p_lpRealOut[j] = p_lpRealIn[i];
cannam@0 141 p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i];
cannam@0 142 }
cannam@0 143
cannam@0 144
cannam@0 145 BlockEnd = 1;
cannam@64 146 for( BlockSize = 2; BlockSize <= m_n; BlockSize <<= 1 )
cannam@0 147 {
cannam@0 148 double delta_angle = angle_numerator / (double)BlockSize;
cannam@0 149 double sm2 = -sin ( -2 * delta_angle );
cannam@0 150 double sm1 = -sin ( -delta_angle );
cannam@0 151 double cm2 = cos ( -2 * delta_angle );
cannam@0 152 double cm1 = cos ( -delta_angle );
cannam@0 153 double w = 2 * cm1;
cannam@0 154 double ar[3], ai[3];
cannam@0 155
cannam@64 156 for( i=0; i < m_n; i += BlockSize )
cannam@0 157 {
cannam@0 158
cannam@0 159 ar[2] = cm2;
cannam@0 160 ar[1] = cm1;
cannam@0 161
cannam@0 162 ai[2] = sm2;
cannam@0 163 ai[1] = sm1;
cannam@0 164
cannam@0 165 for ( j=i, n=0; n < BlockEnd; j++, n++ )
cannam@0 166 {
cannam@0 167
cannam@0 168 ar[0] = w*ar[1] - ar[2];
cannam@0 169 ar[2] = ar[1];
cannam@0 170 ar[1] = ar[0];
cannam@0 171
cannam@0 172 ai[0] = w*ai[1] - ai[2];
cannam@0 173 ai[2] = ai[1];
cannam@0 174 ai[1] = ai[0];
cannam@0 175
cannam@0 176 k = j + BlockEnd;
cannam@0 177 tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k];
cannam@0 178 ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k];
cannam@0 179
cannam@0 180 p_lpRealOut[k] = p_lpRealOut[j] - tr;
cannam@0 181 p_lpImagOut[k] = p_lpImagOut[j] - ti;
cannam@0 182
cannam@0 183 p_lpRealOut[j] += tr;
cannam@0 184 p_lpImagOut[j] += ti;
cannam@0 185
cannam@0 186 }
cannam@0 187 }
cannam@0 188
cannam@0 189 BlockEnd = BlockSize;
cannam@0 190
cannam@0 191 }
cannam@0 192
cannam@0 193
cannam@0 194 if( p_bInverseTransform )
cannam@0 195 {
cannam@64 196 double denom = (double)m_n;
cannam@0 197
cannam@64 198 for ( i=0; i < m_n; i++ )
cannam@0 199 {
cannam@0 200 p_lpRealOut[i] /= denom;
cannam@0 201 p_lpImagOut[i] /= denom;
cannam@0 202 }
cannam@0 203 }
cannam@0 204 }
cannam@0 205