cannam@0
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
cannam@0
|
2
|
cannam@0
|
3 /*
|
cannam@0
|
4 QM DSP Library
|
cannam@0
|
5
|
cannam@0
|
6 Centre for Digital Music, Queen Mary, University of London.
|
cannam@0
|
7 This file is based on Don Cross's public domain FFT implementation.
|
cannam@0
|
8 */
|
cannam@0
|
9
|
cannam@0
|
10 #include "FFT.h"
|
cannam@55
|
11
|
cannam@55
|
12 #include "maths/MathUtilities.h"
|
cannam@55
|
13
|
cannam@0
|
14 #include <cmath>
|
cannam@0
|
15
|
cannam@55
|
16 #include <iostream>
|
cannam@55
|
17
|
Chris@114
|
18 FFT::FFT(int n) :
|
Chris@114
|
19 m_n(n)
|
cannam@0
|
20 {
|
cannam@64
|
21 if( !MathUtilities::isPowerOfTwo(m_n) )
|
cannam@64
|
22 {
|
cannam@64
|
23 std::cerr << "ERROR: FFT: Non-power-of-two FFT size "
|
cannam@64
|
24 << m_n << " not supported in this implementation"
|
cannam@64
|
25 << std::endl;
|
cannam@64
|
26 return;
|
cannam@64
|
27 }
|
cannam@0
|
28 }
|
cannam@0
|
29
|
cannam@0
|
30 FFT::~FFT()
|
cannam@0
|
31 {
|
cannam@0
|
32
|
cannam@0
|
33 }
|
cannam@0
|
34
|
Chris@114
|
35 FFTReal::FFTReal(int n) :
|
cannam@64
|
36 m_n(n),
|
Chris@114
|
37 m_fft(new FFT(n)),
|
Chris@114
|
38 m_r(new double[n]),
|
Chris@114
|
39 m_i(new double[n]),
|
Chris@114
|
40 m_discard(new double[n])
|
cannam@0
|
41 {
|
Chris@114
|
42 for (int i = 0; i < n; ++i) {
|
Chris@114
|
43 m_r[i] = 0;
|
Chris@114
|
44 m_i[i] = 0;
|
Chris@114
|
45 m_discard[i] = 0;
|
Chris@114
|
46 }
|
cannam@64
|
47 }
|
cannam@0
|
48
|
cannam@64
|
49 FFTReal::~FFTReal()
|
cannam@64
|
50 {
|
Chris@114
|
51 delete m_fft;
|
Chris@114
|
52 delete[] m_discard;
|
Chris@114
|
53 delete[] m_r;
|
Chris@114
|
54 delete[] m_i;
|
cannam@64
|
55 }
|
cannam@64
|
56
|
cannam@64
|
57 void
|
Chris@114
|
58 FFTReal::forward(const double *realIn,
|
cannam@64
|
59 double *realOut, double *imagOut)
|
cannam@64
|
60 {
|
Chris@114
|
61 m_fft->process(false, realIn, 0, realOut, imagOut);
|
cannam@64
|
62 }
|
cannam@64
|
63
|
Chris@114
|
64 void
|
Chris@114
|
65 FFTReal::inverse(const double *realIn, const double *imagIn,
|
Chris@114
|
66 double *realOut)
|
Chris@114
|
67 {
|
Chris@114
|
68 for (int i = 0; i < m_n/2 + 1; ++i) {
|
Chris@114
|
69 m_r[i] = realIn[i];
|
Chris@114
|
70 m_i[i] = imagIn[i];
|
Chris@114
|
71 if (i > 0 && i < m_n/2) {
|
Chris@114
|
72 m_r[m_n - i] = realIn[i];
|
Chris@114
|
73 m_i[m_n - i] = -imagIn[i];
|
Chris@114
|
74 }
|
Chris@114
|
75 }
|
Chris@114
|
76 m_fft->process(true, m_r, m_i, realOut, m_discard);
|
Chris@114
|
77 }
|
Chris@114
|
78
|
Chris@114
|
79 static int numberOfBitsNeeded(int p_nSamples)
|
cannam@64
|
80 {
|
cannam@64
|
81 int i;
|
cannam@64
|
82
|
cannam@64
|
83 if( p_nSamples < 2 )
|
cannam@64
|
84 {
|
cannam@64
|
85 return 0;
|
cannam@64
|
86 }
|
cannam@64
|
87
|
cannam@64
|
88 for ( i=0; ; i++ )
|
cannam@64
|
89 {
|
cannam@64
|
90 if( p_nSamples & (1 << i) ) return i;
|
cannam@64
|
91 }
|
cannam@64
|
92 }
|
cannam@64
|
93
|
Chris@114
|
94 static int reverseBits(int p_nIndex, int p_nBits)
|
cannam@64
|
95 {
|
Chris@114
|
96 int i, rev;
|
cannam@64
|
97
|
cannam@64
|
98 for(i=rev=0; i < p_nBits; i++)
|
cannam@64
|
99 {
|
cannam@64
|
100 rev = (rev << 1) | (p_nIndex & 1);
|
cannam@64
|
101 p_nIndex >>= 1;
|
cannam@64
|
102 }
|
cannam@64
|
103
|
cannam@64
|
104 return rev;
|
cannam@64
|
105 }
|
cannam@64
|
106
|
cannam@64
|
107 void
|
cannam@64
|
108 FFT::process(bool p_bInverseTransform,
|
cannam@64
|
109 const double *p_lpRealIn, const double *p_lpImagIn,
|
cannam@64
|
110 double *p_lpRealOut, double *p_lpImagOut)
|
cannam@64
|
111 {
|
cannam@66
|
112 if (!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return;
|
cannam@66
|
113
|
cannam@66
|
114 // std::cerr << "FFT::process(" << m_n << "," << p_bInverseTransform << ")" << std::endl;
|
cannam@0
|
115
|
Chris@114
|
116 int NumBits;
|
Chris@114
|
117 int i, j, k, n;
|
Chris@114
|
118 int BlockSize, BlockEnd;
|
cannam@0
|
119
|
cannam@0
|
120 double angle_numerator = 2.0 * M_PI;
|
cannam@0
|
121 double tr, ti;
|
cannam@0
|
122
|
cannam@64
|
123 if( !MathUtilities::isPowerOfTwo(m_n) )
|
cannam@0
|
124 {
|
cannam@55
|
125 std::cerr << "ERROR: FFT::process: Non-power-of-two FFT size "
|
cannam@64
|
126 << m_n << " not supported in this implementation"
|
cannam@55
|
127 << std::endl;
|
cannam@0
|
128 return;
|
cannam@0
|
129 }
|
cannam@0
|
130
|
cannam@0
|
131 if( p_bInverseTransform ) angle_numerator = -angle_numerator;
|
cannam@0
|
132
|
cannam@64
|
133 NumBits = numberOfBitsNeeded ( m_n );
|
cannam@0
|
134
|
cannam@0
|
135
|
Chris@114
|
136
|
cannam@64
|
137 for( i=0; i < m_n; i++ )
|
cannam@0
|
138 {
|
cannam@0
|
139 j = reverseBits ( i, NumBits );
|
cannam@0
|
140 p_lpRealOut[j] = p_lpRealIn[i];
|
cannam@0
|
141 p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i];
|
cannam@0
|
142 }
|
cannam@0
|
143
|
cannam@0
|
144
|
cannam@0
|
145 BlockEnd = 1;
|
cannam@64
|
146 for( BlockSize = 2; BlockSize <= m_n; BlockSize <<= 1 )
|
cannam@0
|
147 {
|
cannam@0
|
148 double delta_angle = angle_numerator / (double)BlockSize;
|
cannam@0
|
149 double sm2 = -sin ( -2 * delta_angle );
|
cannam@0
|
150 double sm1 = -sin ( -delta_angle );
|
cannam@0
|
151 double cm2 = cos ( -2 * delta_angle );
|
cannam@0
|
152 double cm1 = cos ( -delta_angle );
|
cannam@0
|
153 double w = 2 * cm1;
|
cannam@0
|
154 double ar[3], ai[3];
|
cannam@0
|
155
|
cannam@64
|
156 for( i=0; i < m_n; i += BlockSize )
|
cannam@0
|
157 {
|
cannam@0
|
158
|
cannam@0
|
159 ar[2] = cm2;
|
cannam@0
|
160 ar[1] = cm1;
|
cannam@0
|
161
|
cannam@0
|
162 ai[2] = sm2;
|
cannam@0
|
163 ai[1] = sm1;
|
cannam@0
|
164
|
cannam@0
|
165 for ( j=i, n=0; n < BlockEnd; j++, n++ )
|
cannam@0
|
166 {
|
cannam@0
|
167
|
cannam@0
|
168 ar[0] = w*ar[1] - ar[2];
|
cannam@0
|
169 ar[2] = ar[1];
|
cannam@0
|
170 ar[1] = ar[0];
|
cannam@0
|
171
|
cannam@0
|
172 ai[0] = w*ai[1] - ai[2];
|
cannam@0
|
173 ai[2] = ai[1];
|
cannam@0
|
174 ai[1] = ai[0];
|
cannam@0
|
175
|
cannam@0
|
176 k = j + BlockEnd;
|
cannam@0
|
177 tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k];
|
cannam@0
|
178 ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k];
|
cannam@0
|
179
|
cannam@0
|
180 p_lpRealOut[k] = p_lpRealOut[j] - tr;
|
cannam@0
|
181 p_lpImagOut[k] = p_lpImagOut[j] - ti;
|
cannam@0
|
182
|
cannam@0
|
183 p_lpRealOut[j] += tr;
|
cannam@0
|
184 p_lpImagOut[j] += ti;
|
cannam@0
|
185
|
cannam@0
|
186 }
|
cannam@0
|
187 }
|
cannam@0
|
188
|
cannam@0
|
189 BlockEnd = BlockSize;
|
cannam@0
|
190
|
cannam@0
|
191 }
|
cannam@0
|
192
|
cannam@0
|
193
|
cannam@0
|
194 if( p_bInverseTransform )
|
cannam@0
|
195 {
|
cannam@64
|
196 double denom = (double)m_n;
|
cannam@0
|
197
|
cannam@64
|
198 for ( i=0; i < m_n; i++ )
|
cannam@0
|
199 {
|
cannam@0
|
200 p_lpRealOut[i] /= denom;
|
cannam@0
|
201 p_lpImagOut[i] /= denom;
|
cannam@0
|
202 }
|
cannam@0
|
203 }
|
cannam@0
|
204 }
|
cannam@0
|
205
|