annotate dsp/transforms/FFT.cpp @ 64:6cb2b3cd5356

* Refactor FFT a little bit so as to separate construction and processing rather than have a single static method -- will make it easier to use a different implementation * pull in KissFFT implementation (not hooked up yet)
author cannam
date Wed, 13 May 2009 09:19:12 +0000
parents 7fe29d8a7eaf
children d1d65fff5356
rev   line source
cannam@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@0 2
cannam@0 3 /*
cannam@0 4 QM DSP Library
cannam@0 5
cannam@0 6 Centre for Digital Music, Queen Mary, University of London.
cannam@0 7 This file is based on Don Cross's public domain FFT implementation.
cannam@0 8 */
cannam@0 9
cannam@0 10 #include "FFT.h"
cannam@55 11
cannam@55 12 #include "maths/MathUtilities.h"
cannam@55 13
cannam@0 14 #include <cmath>
cannam@0 15
cannam@55 16 #include <iostream>
cannam@55 17
cannam@64 18 #define USE_BUILTIN_FFT 1
cannam@0 19
cannam@64 20 #ifdef USE_BUILTIN_FFT
cannam@64 21
cannam@64 22 FFT::FFT(unsigned int n) :
cannam@64 23 m_n(n),
cannam@64 24 m_private(0)
cannam@0 25 {
cannam@64 26 if( !MathUtilities::isPowerOfTwo(m_n) )
cannam@64 27 {
cannam@64 28 std::cerr << "ERROR: FFT: Non-power-of-two FFT size "
cannam@64 29 << m_n << " not supported in this implementation"
cannam@64 30 << std::endl;
cannam@64 31 return;
cannam@64 32 }
cannam@0 33 }
cannam@0 34
cannam@0 35 FFT::~FFT()
cannam@0 36 {
cannam@0 37
cannam@0 38 }
cannam@0 39
cannam@64 40 FFTReal::FFTReal(unsigned int n) :
cannam@64 41 m_n(n),
cannam@64 42 m_private(0)
cannam@0 43 {
cannam@64 44 m_private = new FFT(m_n);
cannam@64 45 }
cannam@0 46
cannam@64 47 FFTReal::~FFTReal()
cannam@64 48 {
cannam@64 49 delete (FFT *)m_private;
cannam@64 50 }
cannam@64 51
cannam@64 52 void
cannam@64 53 FFTReal::process(bool inverse,
cannam@64 54 const double *realIn,
cannam@64 55 double *realOut, double *imagOut)
cannam@64 56 {
cannam@64 57 ((FFT *)m_private)->process(inverse, realIn, 0, realOut, imagOut);
cannam@64 58 }
cannam@64 59
cannam@64 60 static unsigned int numberOfBitsNeeded(unsigned int p_nSamples)
cannam@64 61 {
cannam@64 62 int i;
cannam@64 63
cannam@64 64 if( p_nSamples < 2 )
cannam@64 65 {
cannam@64 66 return 0;
cannam@64 67 }
cannam@64 68
cannam@64 69 for ( i=0; ; i++ )
cannam@64 70 {
cannam@64 71 if( p_nSamples & (1 << i) ) return i;
cannam@64 72 }
cannam@64 73 }
cannam@64 74
cannam@64 75 static unsigned int reverseBits(unsigned int p_nIndex, unsigned int p_nBits)
cannam@64 76 {
cannam@64 77 unsigned int i, rev;
cannam@64 78
cannam@64 79 for(i=rev=0; i < p_nBits; i++)
cannam@64 80 {
cannam@64 81 rev = (rev << 1) | (p_nIndex & 1);
cannam@64 82 p_nIndex >>= 1;
cannam@64 83 }
cannam@64 84
cannam@64 85 return rev;
cannam@64 86 }
cannam@64 87
cannam@64 88 void
cannam@64 89 FFT::process(bool p_bInverseTransform,
cannam@64 90 const double *p_lpRealIn, const double *p_lpImagIn,
cannam@64 91 double *p_lpRealOut, double *p_lpImagOut)
cannam@64 92 {
cannam@0 93 if(!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return;
cannam@0 94
cannam@0 95 unsigned int NumBits;
cannam@0 96 unsigned int i, j, k, n;
cannam@0 97 unsigned int BlockSize, BlockEnd;
cannam@0 98
cannam@0 99 double angle_numerator = 2.0 * M_PI;
cannam@0 100 double tr, ti;
cannam@0 101
cannam@64 102 if( !MathUtilities::isPowerOfTwo(m_n) )
cannam@0 103 {
cannam@55 104 std::cerr << "ERROR: FFT::process: Non-power-of-two FFT size "
cannam@64 105 << m_n << " not supported in this implementation"
cannam@55 106 << std::endl;
cannam@0 107 return;
cannam@0 108 }
cannam@0 109
cannam@0 110 if( p_bInverseTransform ) angle_numerator = -angle_numerator;
cannam@0 111
cannam@64 112 NumBits = numberOfBitsNeeded ( m_n );
cannam@0 113
cannam@0 114
cannam@64 115 for( i=0; i < m_n; i++ )
cannam@0 116 {
cannam@0 117 j = reverseBits ( i, NumBits );
cannam@0 118 p_lpRealOut[j] = p_lpRealIn[i];
cannam@0 119 p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i];
cannam@0 120 }
cannam@0 121
cannam@0 122
cannam@0 123 BlockEnd = 1;
cannam@64 124 for( BlockSize = 2; BlockSize <= m_n; BlockSize <<= 1 )
cannam@0 125 {
cannam@0 126 double delta_angle = angle_numerator / (double)BlockSize;
cannam@0 127 double sm2 = -sin ( -2 * delta_angle );
cannam@0 128 double sm1 = -sin ( -delta_angle );
cannam@0 129 double cm2 = cos ( -2 * delta_angle );
cannam@0 130 double cm1 = cos ( -delta_angle );
cannam@0 131 double w = 2 * cm1;
cannam@0 132 double ar[3], ai[3];
cannam@0 133
cannam@64 134 for( i=0; i < m_n; i += BlockSize )
cannam@0 135 {
cannam@0 136
cannam@0 137 ar[2] = cm2;
cannam@0 138 ar[1] = cm1;
cannam@0 139
cannam@0 140 ai[2] = sm2;
cannam@0 141 ai[1] = sm1;
cannam@0 142
cannam@0 143 for ( j=i, n=0; n < BlockEnd; j++, n++ )
cannam@0 144 {
cannam@0 145
cannam@0 146 ar[0] = w*ar[1] - ar[2];
cannam@0 147 ar[2] = ar[1];
cannam@0 148 ar[1] = ar[0];
cannam@0 149
cannam@0 150 ai[0] = w*ai[1] - ai[2];
cannam@0 151 ai[2] = ai[1];
cannam@0 152 ai[1] = ai[0];
cannam@0 153
cannam@0 154 k = j + BlockEnd;
cannam@0 155 tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k];
cannam@0 156 ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k];
cannam@0 157
cannam@0 158 p_lpRealOut[k] = p_lpRealOut[j] - tr;
cannam@0 159 p_lpImagOut[k] = p_lpImagOut[j] - ti;
cannam@0 160
cannam@0 161 p_lpRealOut[j] += tr;
cannam@0 162 p_lpImagOut[j] += ti;
cannam@0 163
cannam@0 164 }
cannam@0 165 }
cannam@0 166
cannam@0 167 BlockEnd = BlockSize;
cannam@0 168
cannam@0 169 }
cannam@0 170
cannam@0 171
cannam@0 172 if( p_bInverseTransform )
cannam@0 173 {
cannam@64 174 double denom = (double)m_n;
cannam@0 175
cannam@64 176 for ( i=0; i < m_n; i++ )
cannam@0 177 {
cannam@0 178 p_lpRealOut[i] /= denom;
cannam@0 179 p_lpImagOut[i] /= denom;
cannam@0 180 }
cannam@0 181 }
cannam@0 182 }
cannam@0 183
cannam@64 184 #else
cannam@0 185
cannam@64 186 #include "kissfft/kiss_fft.h"
cannam@64 187 #include "kissfft/kiss_fftr.h"
cannam@0 188
cannam@64 189 #endif