annotate dsp/transforms/FFT.cpp @ 55:7fe29d8a7eaf

* Various fixes related to the bar estimator code
author cannam
date Tue, 10 Feb 2009 16:37:11 +0000
parents a251fb0de594
children 6cb2b3cd5356
rev   line source
cannam@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@0 2
cannam@0 3 /*
cannam@0 4 QM DSP Library
cannam@0 5
cannam@0 6 Centre for Digital Music, Queen Mary, University of London.
cannam@0 7 This file is based on Don Cross's public domain FFT implementation.
cannam@0 8 */
cannam@0 9
cannam@0 10 #include "FFT.h"
cannam@55 11
cannam@55 12 #include "maths/MathUtilities.h"
cannam@55 13
cannam@0 14 #include <cmath>
cannam@0 15
cannam@55 16 #include <iostream>
cannam@55 17
cannam@0 18 //////////////////////////////////////////////////////////////////////
cannam@0 19 // Construction/Destruction
cannam@0 20 //////////////////////////////////////////////////////////////////////
cannam@0 21
cannam@0 22 FFT::FFT()
cannam@0 23 {
cannam@0 24
cannam@0 25 }
cannam@0 26
cannam@0 27 FFT::~FFT()
cannam@0 28 {
cannam@0 29
cannam@0 30 }
cannam@0 31
cannam@30 32 void FFT::process(unsigned int p_nSamples, bool p_bInverseTransform,
cannam@30 33 const double *p_lpRealIn, const double *p_lpImagIn,
cannam@30 34 double *p_lpRealOut, double *p_lpImagOut)
cannam@0 35 {
cannam@0 36
cannam@0 37 if(!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return;
cannam@0 38
cannam@0 39
cannam@0 40 unsigned int NumBits;
cannam@0 41 unsigned int i, j, k, n;
cannam@0 42 unsigned int BlockSize, BlockEnd;
cannam@0 43
cannam@0 44 double angle_numerator = 2.0 * M_PI;
cannam@0 45 double tr, ti;
cannam@0 46
cannam@55 47 if( !MathUtilities::isPowerOfTwo(p_nSamples) )
cannam@0 48 {
cannam@55 49 std::cerr << "ERROR: FFT::process: Non-power-of-two FFT size "
cannam@55 50 << p_nSamples << " not supported in this implementation"
cannam@55 51 << std::endl;
cannam@0 52 return;
cannam@0 53 }
cannam@0 54
cannam@0 55 if( p_bInverseTransform ) angle_numerator = -angle_numerator;
cannam@0 56
cannam@0 57 NumBits = numberOfBitsNeeded ( p_nSamples );
cannam@0 58
cannam@0 59
cannam@0 60 for( i=0; i < p_nSamples; i++ )
cannam@0 61 {
cannam@0 62 j = reverseBits ( i, NumBits );
cannam@0 63 p_lpRealOut[j] = p_lpRealIn[i];
cannam@0 64 p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i];
cannam@0 65 }
cannam@0 66
cannam@0 67
cannam@0 68 BlockEnd = 1;
cannam@0 69 for( BlockSize = 2; BlockSize <= p_nSamples; BlockSize <<= 1 )
cannam@0 70 {
cannam@0 71 double delta_angle = angle_numerator / (double)BlockSize;
cannam@0 72 double sm2 = -sin ( -2 * delta_angle );
cannam@0 73 double sm1 = -sin ( -delta_angle );
cannam@0 74 double cm2 = cos ( -2 * delta_angle );
cannam@0 75 double cm1 = cos ( -delta_angle );
cannam@0 76 double w = 2 * cm1;
cannam@0 77 double ar[3], ai[3];
cannam@0 78
cannam@0 79 for( i=0; i < p_nSamples; i += BlockSize )
cannam@0 80 {
cannam@0 81
cannam@0 82 ar[2] = cm2;
cannam@0 83 ar[1] = cm1;
cannam@0 84
cannam@0 85 ai[2] = sm2;
cannam@0 86 ai[1] = sm1;
cannam@0 87
cannam@0 88 for ( j=i, n=0; n < BlockEnd; j++, n++ )
cannam@0 89 {
cannam@0 90
cannam@0 91 ar[0] = w*ar[1] - ar[2];
cannam@0 92 ar[2] = ar[1];
cannam@0 93 ar[1] = ar[0];
cannam@0 94
cannam@0 95 ai[0] = w*ai[1] - ai[2];
cannam@0 96 ai[2] = ai[1];
cannam@0 97 ai[1] = ai[0];
cannam@0 98
cannam@0 99 k = j + BlockEnd;
cannam@0 100 tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k];
cannam@0 101 ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k];
cannam@0 102
cannam@0 103 p_lpRealOut[k] = p_lpRealOut[j] - tr;
cannam@0 104 p_lpImagOut[k] = p_lpImagOut[j] - ti;
cannam@0 105
cannam@0 106 p_lpRealOut[j] += tr;
cannam@0 107 p_lpImagOut[j] += ti;
cannam@0 108
cannam@0 109 }
cannam@0 110 }
cannam@0 111
cannam@0 112 BlockEnd = BlockSize;
cannam@0 113
cannam@0 114 }
cannam@0 115
cannam@0 116
cannam@0 117 if( p_bInverseTransform )
cannam@0 118 {
cannam@0 119 double denom = (double)p_nSamples;
cannam@0 120
cannam@0 121 for ( i=0; i < p_nSamples; i++ )
cannam@0 122 {
cannam@0 123 p_lpRealOut[i] /= denom;
cannam@0 124 p_lpImagOut[i] /= denom;
cannam@0 125 }
cannam@0 126 }
cannam@0 127 }
cannam@0 128
cannam@0 129 unsigned int FFT::numberOfBitsNeeded(unsigned int p_nSamples)
cannam@0 130 {
cannam@0 131 int i;
cannam@0 132
cannam@0 133 if( p_nSamples < 2 )
cannam@0 134 {
cannam@0 135 return 0;
cannam@0 136 }
cannam@0 137
cannam@0 138 for ( i=0; ; i++ )
cannam@0 139 {
cannam@0 140 if( p_nSamples & (1 << i) ) return i;
cannam@0 141 }
cannam@0 142 }
cannam@0 143
cannam@0 144 unsigned int FFT::reverseBits(unsigned int p_nIndex, unsigned int p_nBits)
cannam@0 145 {
cannam@0 146 unsigned int i, rev;
cannam@0 147
cannam@0 148 for(i=rev=0; i < p_nBits; i++)
cannam@0 149 {
cannam@0 150 rev = (rev << 1) | (p_nIndex & 1);
cannam@0 151 p_nIndex >>= 1;
cannam@0 152 }
cannam@0 153
cannam@0 154 return rev;
cannam@0 155 }