cannam@0
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
cannam@0
|
2
|
cannam@0
|
3 /*
|
cannam@0
|
4 QM DSP Library
|
cannam@0
|
5
|
cannam@0
|
6 Centre for Digital Music, Queen Mary, University of London.
|
cannam@0
|
7 This file is based on Don Cross's public domain FFT implementation.
|
cannam@0
|
8 */
|
cannam@0
|
9
|
cannam@0
|
10 #include "FFT.h"
|
cannam@55
|
11
|
cannam@55
|
12 #include "maths/MathUtilities.h"
|
cannam@55
|
13
|
cannam@0
|
14 #include <cmath>
|
cannam@0
|
15
|
cannam@55
|
16 #include <iostream>
|
cannam@55
|
17
|
cannam@0
|
18 //////////////////////////////////////////////////////////////////////
|
cannam@0
|
19 // Construction/Destruction
|
cannam@0
|
20 //////////////////////////////////////////////////////////////////////
|
cannam@0
|
21
|
cannam@0
|
22 FFT::FFT()
|
cannam@0
|
23 {
|
cannam@0
|
24
|
cannam@0
|
25 }
|
cannam@0
|
26
|
cannam@0
|
27 FFT::~FFT()
|
cannam@0
|
28 {
|
cannam@0
|
29
|
cannam@0
|
30 }
|
cannam@0
|
31
|
cannam@30
|
32 void FFT::process(unsigned int p_nSamples, bool p_bInverseTransform,
|
cannam@30
|
33 const double *p_lpRealIn, const double *p_lpImagIn,
|
cannam@30
|
34 double *p_lpRealOut, double *p_lpImagOut)
|
cannam@0
|
35 {
|
cannam@0
|
36
|
cannam@0
|
37 if(!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return;
|
cannam@0
|
38
|
cannam@0
|
39
|
cannam@0
|
40 unsigned int NumBits;
|
cannam@0
|
41 unsigned int i, j, k, n;
|
cannam@0
|
42 unsigned int BlockSize, BlockEnd;
|
cannam@0
|
43
|
cannam@0
|
44 double angle_numerator = 2.0 * M_PI;
|
cannam@0
|
45 double tr, ti;
|
cannam@0
|
46
|
cannam@55
|
47 if( !MathUtilities::isPowerOfTwo(p_nSamples) )
|
cannam@0
|
48 {
|
cannam@55
|
49 std::cerr << "ERROR: FFT::process: Non-power-of-two FFT size "
|
cannam@55
|
50 << p_nSamples << " not supported in this implementation"
|
cannam@55
|
51 << std::endl;
|
cannam@0
|
52 return;
|
cannam@0
|
53 }
|
cannam@0
|
54
|
cannam@0
|
55 if( p_bInverseTransform ) angle_numerator = -angle_numerator;
|
cannam@0
|
56
|
cannam@0
|
57 NumBits = numberOfBitsNeeded ( p_nSamples );
|
cannam@0
|
58
|
cannam@0
|
59
|
cannam@0
|
60 for( i=0; i < p_nSamples; i++ )
|
cannam@0
|
61 {
|
cannam@0
|
62 j = reverseBits ( i, NumBits );
|
cannam@0
|
63 p_lpRealOut[j] = p_lpRealIn[i];
|
cannam@0
|
64 p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i];
|
cannam@0
|
65 }
|
cannam@0
|
66
|
cannam@0
|
67
|
cannam@0
|
68 BlockEnd = 1;
|
cannam@0
|
69 for( BlockSize = 2; BlockSize <= p_nSamples; BlockSize <<= 1 )
|
cannam@0
|
70 {
|
cannam@0
|
71 double delta_angle = angle_numerator / (double)BlockSize;
|
cannam@0
|
72 double sm2 = -sin ( -2 * delta_angle );
|
cannam@0
|
73 double sm1 = -sin ( -delta_angle );
|
cannam@0
|
74 double cm2 = cos ( -2 * delta_angle );
|
cannam@0
|
75 double cm1 = cos ( -delta_angle );
|
cannam@0
|
76 double w = 2 * cm1;
|
cannam@0
|
77 double ar[3], ai[3];
|
cannam@0
|
78
|
cannam@0
|
79 for( i=0; i < p_nSamples; i += BlockSize )
|
cannam@0
|
80 {
|
cannam@0
|
81
|
cannam@0
|
82 ar[2] = cm2;
|
cannam@0
|
83 ar[1] = cm1;
|
cannam@0
|
84
|
cannam@0
|
85 ai[2] = sm2;
|
cannam@0
|
86 ai[1] = sm1;
|
cannam@0
|
87
|
cannam@0
|
88 for ( j=i, n=0; n < BlockEnd; j++, n++ )
|
cannam@0
|
89 {
|
cannam@0
|
90
|
cannam@0
|
91 ar[0] = w*ar[1] - ar[2];
|
cannam@0
|
92 ar[2] = ar[1];
|
cannam@0
|
93 ar[1] = ar[0];
|
cannam@0
|
94
|
cannam@0
|
95 ai[0] = w*ai[1] - ai[2];
|
cannam@0
|
96 ai[2] = ai[1];
|
cannam@0
|
97 ai[1] = ai[0];
|
cannam@0
|
98
|
cannam@0
|
99 k = j + BlockEnd;
|
cannam@0
|
100 tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k];
|
cannam@0
|
101 ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k];
|
cannam@0
|
102
|
cannam@0
|
103 p_lpRealOut[k] = p_lpRealOut[j] - tr;
|
cannam@0
|
104 p_lpImagOut[k] = p_lpImagOut[j] - ti;
|
cannam@0
|
105
|
cannam@0
|
106 p_lpRealOut[j] += tr;
|
cannam@0
|
107 p_lpImagOut[j] += ti;
|
cannam@0
|
108
|
cannam@0
|
109 }
|
cannam@0
|
110 }
|
cannam@0
|
111
|
cannam@0
|
112 BlockEnd = BlockSize;
|
cannam@0
|
113
|
cannam@0
|
114 }
|
cannam@0
|
115
|
cannam@0
|
116
|
cannam@0
|
117 if( p_bInverseTransform )
|
cannam@0
|
118 {
|
cannam@0
|
119 double denom = (double)p_nSamples;
|
cannam@0
|
120
|
cannam@0
|
121 for ( i=0; i < p_nSamples; i++ )
|
cannam@0
|
122 {
|
cannam@0
|
123 p_lpRealOut[i] /= denom;
|
cannam@0
|
124 p_lpImagOut[i] /= denom;
|
cannam@0
|
125 }
|
cannam@0
|
126 }
|
cannam@0
|
127 }
|
cannam@0
|
128
|
cannam@0
|
129 unsigned int FFT::numberOfBitsNeeded(unsigned int p_nSamples)
|
cannam@0
|
130 {
|
cannam@0
|
131 int i;
|
cannam@0
|
132
|
cannam@0
|
133 if( p_nSamples < 2 )
|
cannam@0
|
134 {
|
cannam@0
|
135 return 0;
|
cannam@0
|
136 }
|
cannam@0
|
137
|
cannam@0
|
138 for ( i=0; ; i++ )
|
cannam@0
|
139 {
|
cannam@0
|
140 if( p_nSamples & (1 << i) ) return i;
|
cannam@0
|
141 }
|
cannam@0
|
142 }
|
cannam@0
|
143
|
cannam@0
|
144 unsigned int FFT::reverseBits(unsigned int p_nIndex, unsigned int p_nBits)
|
cannam@0
|
145 {
|
cannam@0
|
146 unsigned int i, rev;
|
cannam@0
|
147
|
cannam@0
|
148 for(i=rev=0; i < p_nBits; i++)
|
cannam@0
|
149 {
|
cannam@0
|
150 rev = (rev << 1) | (p_nIndex & 1);
|
cannam@0
|
151 p_nIndex >>= 1;
|
cannam@0
|
152 }
|
cannam@0
|
153
|
cannam@0
|
154 return rev;
|
cannam@0
|
155 }
|