annotate dsp/transforms/FFT.cpp @ 30:a251fb0de594

* Make MFCC able to accept already-FFT'd input, and simplify API a bit * Add log power value to MFCC, restore windowing, and avoid some heap allocs * In HMM, bail out of iteration if loglik hits NaN
author cannam
date Fri, 18 Jan 2008 13:24:12 +0000
parents d7116e3183f8
children 7fe29d8a7eaf
rev   line source
cannam@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@0 2
cannam@0 3 /*
cannam@0 4 QM DSP Library
cannam@0 5
cannam@0 6 Centre for Digital Music, Queen Mary, University of London.
cannam@0 7 This file is based on Don Cross's public domain FFT implementation.
cannam@0 8 */
cannam@0 9
cannam@0 10 #include "FFT.h"
cannam@0 11 #include <cmath>
cannam@0 12
cannam@0 13 //////////////////////////////////////////////////////////////////////
cannam@0 14 // Construction/Destruction
cannam@0 15 //////////////////////////////////////////////////////////////////////
cannam@0 16
cannam@0 17 FFT::FFT()
cannam@0 18 {
cannam@0 19
cannam@0 20 }
cannam@0 21
cannam@0 22 FFT::~FFT()
cannam@0 23 {
cannam@0 24
cannam@0 25 }
cannam@0 26
cannam@30 27 void FFT::process(unsigned int p_nSamples, bool p_bInverseTransform,
cannam@30 28 const double *p_lpRealIn, const double *p_lpImagIn,
cannam@30 29 double *p_lpRealOut, double *p_lpImagOut)
cannam@0 30 {
cannam@0 31
cannam@0 32 if(!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return;
cannam@0 33
cannam@0 34
cannam@0 35 unsigned int NumBits;
cannam@0 36 unsigned int i, j, k, n;
cannam@0 37 unsigned int BlockSize, BlockEnd;
cannam@0 38
cannam@0 39 double angle_numerator = 2.0 * M_PI;
cannam@0 40 double tr, ti;
cannam@0 41
cannam@0 42 if( !isPowerOfTwo(p_nSamples) )
cannam@0 43 {
cannam@0 44 return;
cannam@0 45 }
cannam@0 46
cannam@0 47 if( p_bInverseTransform ) angle_numerator = -angle_numerator;
cannam@0 48
cannam@0 49 NumBits = numberOfBitsNeeded ( p_nSamples );
cannam@0 50
cannam@0 51
cannam@0 52 for( i=0; i < p_nSamples; i++ )
cannam@0 53 {
cannam@0 54 j = reverseBits ( i, NumBits );
cannam@0 55 p_lpRealOut[j] = p_lpRealIn[i];
cannam@0 56 p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i];
cannam@0 57 }
cannam@0 58
cannam@0 59
cannam@0 60 BlockEnd = 1;
cannam@0 61 for( BlockSize = 2; BlockSize <= p_nSamples; BlockSize <<= 1 )
cannam@0 62 {
cannam@0 63 double delta_angle = angle_numerator / (double)BlockSize;
cannam@0 64 double sm2 = -sin ( -2 * delta_angle );
cannam@0 65 double sm1 = -sin ( -delta_angle );
cannam@0 66 double cm2 = cos ( -2 * delta_angle );
cannam@0 67 double cm1 = cos ( -delta_angle );
cannam@0 68 double w = 2 * cm1;
cannam@0 69 double ar[3], ai[3];
cannam@0 70
cannam@0 71 for( i=0; i < p_nSamples; i += BlockSize )
cannam@0 72 {
cannam@0 73
cannam@0 74 ar[2] = cm2;
cannam@0 75 ar[1] = cm1;
cannam@0 76
cannam@0 77 ai[2] = sm2;
cannam@0 78 ai[1] = sm1;
cannam@0 79
cannam@0 80 for ( j=i, n=0; n < BlockEnd; j++, n++ )
cannam@0 81 {
cannam@0 82
cannam@0 83 ar[0] = w*ar[1] - ar[2];
cannam@0 84 ar[2] = ar[1];
cannam@0 85 ar[1] = ar[0];
cannam@0 86
cannam@0 87 ai[0] = w*ai[1] - ai[2];
cannam@0 88 ai[2] = ai[1];
cannam@0 89 ai[1] = ai[0];
cannam@0 90
cannam@0 91 k = j + BlockEnd;
cannam@0 92 tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k];
cannam@0 93 ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k];
cannam@0 94
cannam@0 95 p_lpRealOut[k] = p_lpRealOut[j] - tr;
cannam@0 96 p_lpImagOut[k] = p_lpImagOut[j] - ti;
cannam@0 97
cannam@0 98 p_lpRealOut[j] += tr;
cannam@0 99 p_lpImagOut[j] += ti;
cannam@0 100
cannam@0 101 }
cannam@0 102 }
cannam@0 103
cannam@0 104 BlockEnd = BlockSize;
cannam@0 105
cannam@0 106 }
cannam@0 107
cannam@0 108
cannam@0 109 if( p_bInverseTransform )
cannam@0 110 {
cannam@0 111 double denom = (double)p_nSamples;
cannam@0 112
cannam@0 113 for ( i=0; i < p_nSamples; i++ )
cannam@0 114 {
cannam@0 115 p_lpRealOut[i] /= denom;
cannam@0 116 p_lpImagOut[i] /= denom;
cannam@0 117 }
cannam@0 118 }
cannam@0 119 }
cannam@0 120
cannam@0 121 bool FFT::isPowerOfTwo(unsigned int p_nX)
cannam@0 122 {
cannam@0 123 if( p_nX < 2 ) return false;
cannam@0 124
cannam@0 125 if( p_nX & (p_nX-1) ) return false;
cannam@0 126
cannam@0 127 return true;
cannam@0 128 }
cannam@0 129
cannam@0 130 unsigned int FFT::numberOfBitsNeeded(unsigned int p_nSamples)
cannam@0 131 {
cannam@0 132 int i;
cannam@0 133
cannam@0 134 if( p_nSamples < 2 )
cannam@0 135 {
cannam@0 136 return 0;
cannam@0 137 }
cannam@0 138
cannam@0 139 for ( i=0; ; i++ )
cannam@0 140 {
cannam@0 141 if( p_nSamples & (1 << i) ) return i;
cannam@0 142 }
cannam@0 143 }
cannam@0 144
cannam@0 145 unsigned int FFT::reverseBits(unsigned int p_nIndex, unsigned int p_nBits)
cannam@0 146 {
cannam@0 147 unsigned int i, rev;
cannam@0 148
cannam@0 149 for(i=rev=0; i < p_nBits; i++)
cannam@0 150 {
cannam@0 151 rev = (rev << 1) | (p_nIndex & 1);
cannam@0 152 p_nIndex >>= 1;
cannam@0 153 }
cannam@0 154
cannam@0 155 return rev;
cannam@0 156 }