Mercurial > hg > qm-dsp
view dsp/transforms/FFT.cpp @ 114:f6ccde089491 pvoc
Tidy real-to-complex FFT -- forward and inverse have different arguments, so make them separate functions; document
author | Chris Cannam |
---|---|
date | Wed, 02 Oct 2013 15:04:38 +0100 |
parents | e5907ae6de17 |
children | 6ec45e85ed81 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* QM DSP Library Centre for Digital Music, Queen Mary, University of London. This file is based on Don Cross's public domain FFT implementation. */ #include "FFT.h" #include "maths/MathUtilities.h" #include <cmath> #include <iostream> FFT::FFT(int n) : m_n(n) { if( !MathUtilities::isPowerOfTwo(m_n) ) { std::cerr << "ERROR: FFT: Non-power-of-two FFT size " << m_n << " not supported in this implementation" << std::endl; return; } } FFT::~FFT() { } FFTReal::FFTReal(int n) : m_n(n), m_fft(new FFT(n)), m_r(new double[n]), m_i(new double[n]), m_discard(new double[n]) { for (int i = 0; i < n; ++i) { m_r[i] = 0; m_i[i] = 0; m_discard[i] = 0; } } FFTReal::~FFTReal() { delete m_fft; delete[] m_discard; delete[] m_r; delete[] m_i; } void FFTReal::forward(const double *realIn, double *realOut, double *imagOut) { m_fft->process(false, realIn, 0, realOut, imagOut); } void FFTReal::inverse(const double *realIn, const double *imagIn, double *realOut) { for (int i = 0; i < m_n/2 + 1; ++i) { m_r[i] = realIn[i]; m_i[i] = imagIn[i]; if (i > 0 && i < m_n/2) { m_r[m_n - i] = realIn[i]; m_i[m_n - i] = -imagIn[i]; } } m_fft->process(true, m_r, m_i, realOut, m_discard); } static int numberOfBitsNeeded(int p_nSamples) { int i; if( p_nSamples < 2 ) { return 0; } for ( i=0; ; i++ ) { if( p_nSamples & (1 << i) ) return i; } } static int reverseBits(int p_nIndex, int p_nBits) { int i, rev; for(i=rev=0; i < p_nBits; i++) { rev = (rev << 1) | (p_nIndex & 1); p_nIndex >>= 1; } return rev; } void FFT::process(bool p_bInverseTransform, const double *p_lpRealIn, const double *p_lpImagIn, double *p_lpRealOut, double *p_lpImagOut) { if (!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return; // std::cerr << "FFT::process(" << m_n << "," << p_bInverseTransform << ")" << std::endl; int NumBits; int i, j, k, n; int BlockSize, BlockEnd; double angle_numerator = 2.0 * M_PI; double tr, ti; if( !MathUtilities::isPowerOfTwo(m_n) ) { std::cerr << "ERROR: FFT::process: Non-power-of-two FFT size " << m_n << " not supported in this implementation" << std::endl; return; } if( p_bInverseTransform ) angle_numerator = -angle_numerator; NumBits = numberOfBitsNeeded ( m_n ); for( i=0; i < m_n; i++ ) { j = reverseBits ( i, NumBits ); p_lpRealOut[j] = p_lpRealIn[i]; p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i]; } BlockEnd = 1; for( BlockSize = 2; BlockSize <= m_n; BlockSize <<= 1 ) { double delta_angle = angle_numerator / (double)BlockSize; double sm2 = -sin ( -2 * delta_angle ); double sm1 = -sin ( -delta_angle ); double cm2 = cos ( -2 * delta_angle ); double cm1 = cos ( -delta_angle ); double w = 2 * cm1; double ar[3], ai[3]; for( i=0; i < m_n; i += BlockSize ) { ar[2] = cm2; ar[1] = cm1; ai[2] = sm2; ai[1] = sm1; for ( j=i, n=0; n < BlockEnd; j++, n++ ) { ar[0] = w*ar[1] - ar[2]; ar[2] = ar[1]; ar[1] = ar[0]; ai[0] = w*ai[1] - ai[2]; ai[2] = ai[1]; ai[1] = ai[0]; k = j + BlockEnd; tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k]; ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k]; p_lpRealOut[k] = p_lpRealOut[j] - tr; p_lpImagOut[k] = p_lpImagOut[j] - ti; p_lpRealOut[j] += tr; p_lpImagOut[j] += ti; } } BlockEnd = BlockSize; } if( p_bInverseTransform ) { double denom = (double)m_n; for ( i=0; i < m_n; i++ ) { p_lpRealOut[i] /= denom; p_lpImagOut[i] /= denom; } } }