cannam@0: /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ cannam@0: cannam@0: /* cannam@0: QM DSP Library cannam@0: cannam@0: Centre for Digital Music, Queen Mary, University of London. cannam@0: This file is based on Don Cross's public domain FFT implementation. cannam@0: */ cannam@0: cannam@0: #include "FFT.h" cannam@55: cannam@55: #include "maths/MathUtilities.h" cannam@55: cannam@0: #include cannam@0: cannam@55: #include cannam@55: Chris@114: FFT::FFT(int n) : Chris@114: m_n(n) cannam@0: { cannam@64: if( !MathUtilities::isPowerOfTwo(m_n) ) cannam@64: { cannam@64: std::cerr << "ERROR: FFT: Non-power-of-two FFT size " cannam@64: << m_n << " not supported in this implementation" cannam@64: << std::endl; cannam@64: return; cannam@64: } cannam@0: } cannam@0: cannam@0: FFT::~FFT() cannam@0: { cannam@0: cannam@0: } cannam@0: Chris@114: FFTReal::FFTReal(int n) : cannam@64: m_n(n), Chris@114: m_fft(new FFT(n)), Chris@114: m_r(new double[n]), Chris@114: m_i(new double[n]), Chris@114: m_discard(new double[n]) cannam@0: { Chris@114: for (int i = 0; i < n; ++i) { Chris@114: m_r[i] = 0; Chris@114: m_i[i] = 0; Chris@114: m_discard[i] = 0; Chris@114: } cannam@64: } cannam@0: cannam@64: FFTReal::~FFTReal() cannam@64: { Chris@114: delete m_fft; Chris@114: delete[] m_discard; Chris@114: delete[] m_r; Chris@114: delete[] m_i; cannam@64: } cannam@64: cannam@64: void Chris@114: FFTReal::forward(const double *realIn, cannam@64: double *realOut, double *imagOut) cannam@64: { Chris@114: m_fft->process(false, realIn, 0, realOut, imagOut); cannam@64: } cannam@64: Chris@114: void Chris@114: FFTReal::inverse(const double *realIn, const double *imagIn, Chris@114: double *realOut) Chris@114: { Chris@114: for (int i = 0; i < m_n/2 + 1; ++i) { Chris@114: m_r[i] = realIn[i]; Chris@114: m_i[i] = imagIn[i]; Chris@114: if (i > 0 && i < m_n/2) { Chris@114: m_r[m_n - i] = realIn[i]; Chris@114: m_i[m_n - i] = -imagIn[i]; Chris@114: } Chris@114: } Chris@114: m_fft->process(true, m_r, m_i, realOut, m_discard); Chris@114: } Chris@114: Chris@114: static int numberOfBitsNeeded(int p_nSamples) cannam@64: { cannam@64: int i; cannam@64: cannam@64: if( p_nSamples < 2 ) cannam@64: { cannam@64: return 0; cannam@64: } cannam@64: cannam@64: for ( i=0; ; i++ ) cannam@64: { cannam@64: if( p_nSamples & (1 << i) ) return i; cannam@64: } cannam@64: } cannam@64: Chris@114: static int reverseBits(int p_nIndex, int p_nBits) cannam@64: { Chris@114: int i, rev; cannam@64: cannam@64: for(i=rev=0; i < p_nBits; i++) cannam@64: { cannam@64: rev = (rev << 1) | (p_nIndex & 1); cannam@64: p_nIndex >>= 1; cannam@64: } cannam@64: cannam@64: return rev; cannam@64: } cannam@64: cannam@64: void cannam@64: FFT::process(bool p_bInverseTransform, cannam@64: const double *p_lpRealIn, const double *p_lpImagIn, cannam@64: double *p_lpRealOut, double *p_lpImagOut) cannam@64: { cannam@66: if (!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return; cannam@66: cannam@66: // std::cerr << "FFT::process(" << m_n << "," << p_bInverseTransform << ")" << std::endl; cannam@0: Chris@114: int NumBits; Chris@114: int i, j, k, n; Chris@114: int BlockSize, BlockEnd; cannam@0: cannam@0: double angle_numerator = 2.0 * M_PI; cannam@0: double tr, ti; cannam@0: cannam@64: if( !MathUtilities::isPowerOfTwo(m_n) ) cannam@0: { cannam@55: std::cerr << "ERROR: FFT::process: Non-power-of-two FFT size " cannam@64: << m_n << " not supported in this implementation" cannam@55: << std::endl; cannam@0: return; cannam@0: } cannam@0: cannam@0: if( p_bInverseTransform ) angle_numerator = -angle_numerator; cannam@0: cannam@64: NumBits = numberOfBitsNeeded ( m_n ); cannam@0: cannam@0: Chris@114: cannam@64: for( i=0; i < m_n; i++ ) cannam@0: { cannam@0: j = reverseBits ( i, NumBits ); cannam@0: p_lpRealOut[j] = p_lpRealIn[i]; cannam@0: p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i]; cannam@0: } cannam@0: cannam@0: cannam@0: BlockEnd = 1; cannam@64: for( BlockSize = 2; BlockSize <= m_n; BlockSize <<= 1 ) cannam@0: { cannam@0: double delta_angle = angle_numerator / (double)BlockSize; cannam@0: double sm2 = -sin ( -2 * delta_angle ); cannam@0: double sm1 = -sin ( -delta_angle ); cannam@0: double cm2 = cos ( -2 * delta_angle ); cannam@0: double cm1 = cos ( -delta_angle ); cannam@0: double w = 2 * cm1; cannam@0: double ar[3], ai[3]; cannam@0: cannam@64: for( i=0; i < m_n; i += BlockSize ) cannam@0: { cannam@0: cannam@0: ar[2] = cm2; cannam@0: ar[1] = cm1; cannam@0: cannam@0: ai[2] = sm2; cannam@0: ai[1] = sm1; cannam@0: cannam@0: for ( j=i, n=0; n < BlockEnd; j++, n++ ) cannam@0: { cannam@0: cannam@0: ar[0] = w*ar[1] - ar[2]; cannam@0: ar[2] = ar[1]; cannam@0: ar[1] = ar[0]; cannam@0: cannam@0: ai[0] = w*ai[1] - ai[2]; cannam@0: ai[2] = ai[1]; cannam@0: ai[1] = ai[0]; cannam@0: cannam@0: k = j + BlockEnd; cannam@0: tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k]; cannam@0: ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k]; cannam@0: cannam@0: p_lpRealOut[k] = p_lpRealOut[j] - tr; cannam@0: p_lpImagOut[k] = p_lpImagOut[j] - ti; cannam@0: cannam@0: p_lpRealOut[j] += tr; cannam@0: p_lpImagOut[j] += ti; cannam@0: cannam@0: } cannam@0: } cannam@0: cannam@0: BlockEnd = BlockSize; cannam@0: cannam@0: } cannam@0: cannam@0: cannam@0: if( p_bInverseTransform ) cannam@0: { cannam@64: double denom = (double)m_n; cannam@0: cannam@64: for ( i=0; i < m_n; i++ ) cannam@0: { cannam@0: p_lpRealOut[i] /= denom; cannam@0: p_lpImagOut[i] /= denom; cannam@0: } cannam@0: } cannam@0: } cannam@0: