annotate garage-resampler/Resampler.cpp @ 11:381823e25b8a

Avoid int overflow in resample; tidy
author Chris Cannam
date Fri, 18 Oct 2013 11:11:41 +0100
parents f81f1dd66598
children 66abf86c864d
rev   line source
Chris@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@0 2
Chris@0 3 #include "Resampler.h"
Chris@0 4
Chris@0 5 #include "qm-dsp/maths/MathUtilities.h"
Chris@0 6 #include "qm-dsp/base/KaiserWindow.h"
Chris@0 7 #include "qm-dsp/base/SincWindow.h"
Chris@9 8 #include "qm-dsp/thread/Thread.h"
Chris@0 9
Chris@0 10 #include <iostream>
Chris@1 11 #include <vector>
Chris@8 12 #include <map>
Chris@10 13 #include <cassert>
Chris@1 14
Chris@1 15 using std::vector;
Chris@8 16 using std::map;
Chris@0 17
Chris@4 18 //#define DEBUG_RESAMPLER 1
Chris@4 19
Chris@0 20 Resampler::Resampler(int sourceRate, int targetRate) :
Chris@0 21 m_sourceRate(sourceRate),
Chris@0 22 m_targetRate(targetRate)
Chris@0 23 {
Chris@0 24 initialise();
Chris@0 25 }
Chris@0 26
Chris@0 27 Resampler::~Resampler()
Chris@0 28 {
Chris@0 29 delete[] m_phaseData;
Chris@0 30 }
Chris@0 31
Chris@9 32 // peakToPole -> length -> beta -> window
Chris@9 33 static map<int, map<int, map<double, vector<double> > > >
Chris@9 34 knownFilters;
Chris@9 35
Chris@9 36 static Mutex
Chris@9 37 knownFilterMutex;
Chris@9 38
Chris@0 39 void
Chris@0 40 Resampler::initialise()
Chris@0 41 {
Chris@0 42 int higher = std::max(m_sourceRate, m_targetRate);
Chris@0 43 int lower = std::min(m_sourceRate, m_targetRate);
Chris@0 44
Chris@0 45 m_gcd = MathUtilities::gcd(lower, higher);
Chris@0 46
Chris@0 47 int peakToPole = higher / m_gcd;
Chris@0 48
Chris@0 49 KaiserWindow::Parameters params =
Chris@0 50 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
Chris@0 51
Chris@0 52 params.length =
Chris@0 53 (params.length % 2 == 0 ? params.length + 1 : params.length);
Chris@0 54
Chris@10 55 params.length =
Chris@10 56 (params.length > 200001 ? 200001 : params.length);
Chris@10 57
Chris@0 58 m_filterLength = params.length;
Chris@8 59
Chris@9 60 vector<double> filter;
Chris@9 61 knownFilterMutex.lock();
Chris@0 62
Chris@9 63 if (knownFilters[peakToPole][m_filterLength].find(params.beta) ==
Chris@9 64 knownFilters[peakToPole][m_filterLength].end()) {
Chris@9 65
Chris@9 66 KaiserWindow kw(params);
Chris@9 67 SincWindow sw(m_filterLength, peakToPole * 2);
Chris@9 68
Chris@9 69 filter = vector<double>(m_filterLength, 0.0);
Chris@9 70 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
Chris@9 71 sw.cut(filter.data());
Chris@9 72 kw.cut(filter.data());
Chris@9 73
Chris@9 74 knownFilters[peakToPole][m_filterLength][params.beta] = filter;
Chris@9 75 }
Chris@9 76
Chris@9 77 filter = knownFilters[peakToPole][m_filterLength][params.beta];
Chris@9 78 knownFilterMutex.unlock();
Chris@0 79
Chris@0 80 int inputSpacing = m_targetRate / m_gcd;
Chris@0 81 int outputSpacing = m_sourceRate / m_gcd;
Chris@0 82
Chris@4 83 #ifdef DEBUG_RESAMPLER
Chris@4 84 std::cerr << "resample " << m_sourceRate << " -> " << m_targetRate
Chris@4 85 << ": inputSpacing " << inputSpacing << ", outputSpacing "
Chris@4 86 << outputSpacing << ": filter length " << m_filterLength
Chris@4 87 << std::endl;
Chris@4 88 #endif
Chris@0 89
Chris@10 90 // Now we have a filter of (odd) length flen in which the lower
Chris@10 91 // sample rate corresponds to every n'th point and the higher rate
Chris@10 92 // to every m'th where n and m are higher and lower rates divided
Chris@10 93 // by their gcd respectively. So if x coordinates are on the same
Chris@10 94 // scale as our filter resolution, then source sample i is at i *
Chris@10 95 // (targetRate / gcd) and target sample j is at j * (sourceRate /
Chris@10 96 // gcd).
Chris@10 97
Chris@10 98 // To reconstruct a single target sample, we want a buffer (real
Chris@10 99 // or virtual) of flen values formed of source samples spaced at
Chris@10 100 // intervals of (targetRate / gcd), in our example case 3. This
Chris@10 101 // is initially formed with the first sample at the filter peak.
Chris@10 102 //
Chris@10 103 // 0 0 0 0 a 0 0 b 0
Chris@10 104 //
Chris@10 105 // and of course we have our filter
Chris@10 106 //
Chris@10 107 // f1 f2 f3 f4 f5 f6 f7 f8 f9
Chris@10 108 //
Chris@10 109 // We take the sum of products of non-zero values from this buffer
Chris@10 110 // with corresponding values in the filter
Chris@10 111 //
Chris@10 112 // a * f5 + b * f8
Chris@10 113 //
Chris@10 114 // Then we drop (sourceRate / gcd) values, in our example case 4,
Chris@10 115 // from the start of the buffer and fill until it has flen values
Chris@10 116 // again
Chris@10 117 //
Chris@10 118 // a 0 0 b 0 0 c 0 0
Chris@10 119 //
Chris@10 120 // repeat to reconstruct the next target sample
Chris@10 121 //
Chris@10 122 // a * f1 + b * f4 + c * f7
Chris@10 123 //
Chris@10 124 // and so on.
Chris@10 125 //
Chris@10 126 // Above I said the buffer could be "real or virtual" -- ours is
Chris@10 127 // virtual. We don't actually store all the zero spacing values,
Chris@10 128 // except for padding at the start; normally we store only the
Chris@10 129 // values that actually came from the source stream, along with a
Chris@10 130 // phase value that tells us how many virtual zeroes there are at
Chris@10 131 // the start of the virtual buffer. So the two examples above are
Chris@10 132 //
Chris@10 133 // 0 a b [ with phase 1 ]
Chris@10 134 // a b c [ with phase 0 ]
Chris@10 135 //
Chris@10 136 // Having thus broken down the buffer so that only the elements we
Chris@10 137 // need to multiply are present, we can also unzip the filter into
Chris@10 138 // every-nth-element subsets at each phase, allowing us to do the
Chris@10 139 // filter multiplication as a simply vector multiply. That is, rather
Chris@10 140 // than store
Chris@10 141 //
Chris@10 142 // f1 f2 f3 f4 f5 f6 f7 f8 f9
Chris@10 143 //
Chris@10 144 // we store separately
Chris@10 145 //
Chris@10 146 // f1 f4 f7
Chris@10 147 // f2 f5 f8
Chris@10 148 // f3 f6 f9
Chris@10 149 //
Chris@10 150 // Each time we complete a multiply-and-sum, we need to work out
Chris@10 151 // how many (real) samples to drop from the start of our buffer,
Chris@10 152 // and how many to add at the end of it for the next multiply. We
Chris@10 153 // know we want to drop enough real samples to move along by one
Chris@10 154 // computed output sample, which is our outputSpacing number of
Chris@10 155 // virtual buffer samples. Depending on the relationship between
Chris@10 156 // input and output spacings, this may mean dropping several real
Chris@10 157 // samples, one real sample, or none at all (and simply moving to
Chris@10 158 // a different "phase").
Chris@10 159
Chris@0 160 m_phaseData = new Phase[inputSpacing];
Chris@0 161
Chris@0 162 for (int phase = 0; phase < inputSpacing; ++phase) {
Chris@0 163
Chris@0 164 Phase p;
Chris@0 165
Chris@0 166 p.nextPhase = phase - outputSpacing;
Chris@0 167 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
Chris@0 168 p.nextPhase %= inputSpacing;
Chris@0 169
Chris@4 170 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
Chris@4 171 / inputSpacing));
Chris@0 172
Chris@4 173 int filtZipLength = int(ceil(double(m_filterLength - phase)
Chris@4 174 / inputSpacing));
Chris@10 175
Chris@0 176 for (int i = 0; i < filtZipLength; ++i) {
Chris@0 177 p.filter.push_back(filter[i * inputSpacing + phase]);
Chris@0 178 }
Chris@0 179
Chris@0 180 m_phaseData[phase] = p;
Chris@0 181 }
Chris@0 182
Chris@0 183 // The May implementation of this uses a pull model -- we ask the
Chris@0 184 // resampler for a certain number of output samples, and it asks
Chris@0 185 // its source stream for as many as it needs to calculate
Chris@0 186 // those. This means (among other things) that the source stream
Chris@0 187 // can be asked for enough samples up-front to fill the buffer
Chris@0 188 // before the first output sample is generated.
Chris@0 189 //
Chris@0 190 // In this implementation we're using a push model in which a
Chris@0 191 // certain number of source samples is provided and we're asked
Chris@0 192 // for as many output samples as that makes available. But we
Chris@0 193 // can't return any samples from the beginning until half the
Chris@0 194 // filter length has been provided as input. This means we must
Chris@0 195 // either return a very variable number of samples (none at all
Chris@0 196 // until the filter fills, then half the filter length at once) or
Chris@0 197 // else have a lengthy declared latency on the output. We do the
Chris@0 198 // latter. (What do other implementations do?)
Chris@11 199 //
Chris@10 200 // We want to make sure the first "real" sample will eventually be
Chris@10 201 // aligned with the centre sample in the filter (it's tidier, and
Chris@10 202 // easier to do diagnostic calculations that way). So we need to
Chris@10 203 // pick the initial phase and buffer fill accordingly.
Chris@10 204 //
Chris@10 205 // Example: if the inputSpacing is 2, outputSpacing is 3, and
Chris@10 206 // filter length is 7,
Chris@10 207 //
Chris@10 208 // x x x x a b c ... input samples
Chris@10 209 // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
Chris@10 210 // i j k l ... output samples
Chris@10 211 // [--------|--------] <- filter with centre mark
Chris@10 212 //
Chris@10 213 // Let h be the index of the centre mark, here 3 (generally
Chris@10 214 // int(filterLength/2) for odd-length filters).
Chris@10 215 //
Chris@10 216 // The smallest n such that h + n * outputSpacing > filterLength
Chris@10 217 // is 2 (that is, ceil((filterLength - h) / outputSpacing)), and
Chris@10 218 // (h + 2 * outputSpacing) % inputSpacing == 1, so the initial
Chris@10 219 // phase is 1.
Chris@10 220 //
Chris@10 221 // To achieve our n, we need to pre-fill the "virtual" buffer with
Chris@10 222 // 4 zero samples: the x's above. This is int((h + n *
Chris@10 223 // outputSpacing) / inputSpacing). It's the phase that makes this
Chris@10 224 // buffer get dealt with in such a way as to give us an effective
Chris@10 225 // index for sample a of 9 rather than 8 or 10 or whatever.
Chris@10 226 //
Chris@10 227 // This gives us output latency of 2 (== n), i.e. output samples i
Chris@10 228 // and j will appear before the one in which input sample a is at
Chris@10 229 // the centre of the filter.
Chris@10 230
Chris@10 231 int h = int(m_filterLength / 2);
Chris@10 232 int n = ceil(double(m_filterLength - h) / outputSpacing);
Chris@4 233
Chris@10 234 m_phase = (h + n * outputSpacing) % inputSpacing;
Chris@10 235
Chris@10 236 int fill = (h + n * outputSpacing) / inputSpacing;
Chris@10 237
Chris@10 238 m_latency = n;
Chris@10 239
Chris@10 240 m_buffer = vector<double>(fill, 0);
Chris@8 241 m_bufferOrigin = 0;
Chris@4 242
Chris@4 243 #ifdef DEBUG_RESAMPLER
Chris@4 244 std::cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
Chris@4 245 << ", latency " << m_latency << std::endl;
Chris@4 246 #endif
Chris@0 247 }
Chris@0 248
Chris@0 249 double
Chris@4 250 Resampler::reconstructOne()
Chris@0 251 {
Chris@0 252 Phase &pd = m_phaseData[m_phase];
Chris@4 253 double v = 0.0;
Chris@0 254 int n = pd.filter.size();
Chris@10 255
Chris@11 256 assert(n + m_bufferOrigin <= (int)m_buffer.size());
Chris@10 257
Chris@8 258 const double *const __restrict__ buf = m_buffer.data() + m_bufferOrigin;
Chris@8 259 const double *const __restrict__ filt = pd.filter.data();
Chris@10 260
Chris@10 261 // std::cerr << "phase = " << m_phase << ", drop = " << pd.drop << ", buffer for reconstruction starts...";
Chris@10 262 // for (int i = 0; i < 20; ++i) {
Chris@10 263 // if (i % 5 == 0) std::cerr << "\n" << i << " ";
Chris@10 264 // std::cerr << buf[i] << " ";
Chris@10 265 // }
Chris@10 266 // std::cerr << std::endl;
Chris@10 267
Chris@0 268 for (int i = 0; i < n; ++i) {
Chris@8 269 // NB gcc can only vectorize this with -ffast-math
Chris@8 270 v += buf[i] * filt[i];
Chris@0 271 }
Chris@8 272 m_bufferOrigin += pd.drop;
Chris@4 273 m_phase = pd.nextPhase;
Chris@0 274 return v;
Chris@0 275 }
Chris@0 276
Chris@0 277 int
Chris@4 278 Resampler::process(const double *src, double *dst, int n)
Chris@0 279 {
Chris@4 280 for (int i = 0; i < n; ++i) {
Chris@4 281 m_buffer.push_back(src[i]);
Chris@0 282 }
Chris@0 283
Chris@4 284 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
Chris@4 285 int outidx = 0;
Chris@2 286
Chris@4 287 #ifdef DEBUG_RESAMPLER
Chris@4 288 std::cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << std::endl;
Chris@4 289 #endif
Chris@4 290
Chris@5 291 double scaleFactor = 1.0;
Chris@5 292 if (m_targetRate < m_sourceRate) {
Chris@5 293 scaleFactor = double(m_targetRate) / double(m_sourceRate);
Chris@5 294 }
Chris@5 295
Chris@4 296 while (outidx < maxout &&
Chris@8 297 m_buffer.size() >= m_phaseData[m_phase].filter.size() + m_bufferOrigin) {
Chris@5 298 dst[outidx] = scaleFactor * reconstructOne();
Chris@4 299 outidx++;
Chris@2 300 }
Chris@8 301
Chris@8 302 m_buffer = vector<double>(m_buffer.begin() + m_bufferOrigin, m_buffer.end());
Chris@8 303 m_bufferOrigin = 0;
Chris@4 304
Chris@4 305 return outidx;
Chris@0 306 }
Chris@4 307
Chris@1 308 std::vector<double>
Chris@1 309 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
Chris@1 310 {
Chris@1 311 Resampler r(sourceRate, targetRate);
Chris@1 312
Chris@1 313 int latency = r.getLatency();
Chris@1 314
Chris@6 315 // latency is the output latency. We need to provide enough
Chris@6 316 // padding input samples at the end of input to guarantee at
Chris@6 317 // *least* the latency's worth of output samples. that is,
Chris@6 318
Chris@11 319 int inputPad = int(ceil((double(latency) * sourceRate) / targetRate));
Chris@6 320
Chris@6 321 // that means we are providing this much input in total:
Chris@6 322
Chris@6 323 int n1 = n + inputPad;
Chris@6 324
Chris@6 325 // and obtaining this much output in total:
Chris@6 326
Chris@11 327 int m1 = int(ceil((double(n1) * targetRate) / sourceRate));
Chris@6 328
Chris@6 329 // in order to return this much output to the user:
Chris@6 330
Chris@11 331 int m = int(ceil((double(n) * targetRate) / sourceRate));
Chris@6 332
Chris@11 333 // std::cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", inputPad = " << inputPad << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << std::endl;
Chris@1 334
Chris@1 335 vector<double> pad(n1 - n, 0.0);
Chris@6 336 vector<double> out(m1 + 1, 0.0);
Chris@1 337
Chris@1 338 int got = r.process(data, out.data(), n);
Chris@1 339 got += r.process(pad.data(), out.data() + got, pad.size());
Chris@1 340
Chris@4 341 #ifdef DEBUG_RESAMPLER
Chris@4 342 std::cerr << "resample: " << n << " in, " << got << " out" << std::endl;
Chris@10 343 std::cerr << "first 10 in:" << std::endl;
Chris@10 344 for (int i = 0; i < 10; ++i) {
Chris@10 345 std::cerr << data[i] << " ";
Chris@10 346 if (i == 5) std::cerr << std::endl;
Chris@4 347 }
Chris@10 348 std::cerr << std::endl;
Chris@4 349 #endif
Chris@4 350
Chris@6 351 int toReturn = got - latency;
Chris@6 352 if (toReturn > m) toReturn = m;
Chris@6 353
Chris@10 354 vector<double> sliced(out.begin() + latency,
Chris@6 355 out.begin() + latency + toReturn);
Chris@10 356
Chris@10 357 #ifdef DEBUG_RESAMPLER
Chris@10 358 std::cerr << "all out (after latency compensation), length " << sliced.size() << ":";
Chris@10 359 for (int i = 0; i < sliced.size(); ++i) {
Chris@10 360 if (i % 5 == 0) std::cerr << std::endl << i << "... ";
Chris@10 361 std::cerr << sliced[i] << " ";
Chris@10 362 }
Chris@10 363 std::cerr << std::endl;
Chris@10 364 #endif
Chris@10 365
Chris@10 366 return sliced;
Chris@1 367 }
Chris@1 368