annotate garage-resampler/Resampler.cpp @ 4:1c3ab56ee9b5

More resampler fixes (particularly to latency calculation) and tests
author Chris Cannam
date Mon, 14 Oct 2013 16:15:32 +0100
parents 58e0bf3f87e3
children 8ed638d62713
rev   line source
Chris@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@0 2
Chris@0 3 #include "Resampler.h"
Chris@0 4
Chris@0 5 #include "qm-dsp/maths/MathUtilities.h"
Chris@0 6 #include "qm-dsp/base/KaiserWindow.h"
Chris@0 7 #include "qm-dsp/base/SincWindow.h"
Chris@0 8
Chris@0 9 #include <iostream>
Chris@1 10 #include <vector>
Chris@1 11
Chris@1 12 using std::vector;
Chris@0 13
Chris@4 14 //#define DEBUG_RESAMPLER 1
Chris@4 15
Chris@0 16 Resampler::Resampler(int sourceRate, int targetRate) :
Chris@0 17 m_sourceRate(sourceRate),
Chris@0 18 m_targetRate(targetRate)
Chris@0 19 {
Chris@0 20 initialise();
Chris@0 21 }
Chris@0 22
Chris@0 23 Resampler::~Resampler()
Chris@0 24 {
Chris@0 25 delete[] m_phaseData;
Chris@0 26 }
Chris@0 27
Chris@0 28 void
Chris@0 29 Resampler::initialise()
Chris@0 30 {
Chris@0 31 int higher = std::max(m_sourceRate, m_targetRate);
Chris@0 32 int lower = std::min(m_sourceRate, m_targetRate);
Chris@0 33
Chris@0 34 m_gcd = MathUtilities::gcd(lower, higher);
Chris@0 35
Chris@0 36 int peakToPole = higher / m_gcd;
Chris@0 37
Chris@0 38 KaiserWindow::Parameters params =
Chris@0 39 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
Chris@0 40
Chris@0 41 params.length =
Chris@0 42 (params.length % 2 == 0 ? params.length + 1 : params.length);
Chris@0 43
Chris@0 44 m_filterLength = params.length;
Chris@0 45
Chris@0 46 KaiserWindow kw(params);
Chris@0 47 SincWindow sw(m_filterLength, peakToPole * 2);
Chris@0 48
Chris@0 49 double *filter = new double[m_filterLength];
Chris@0 50 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
Chris@0 51 sw.cut(filter);
Chris@0 52 kw.cut(filter);
Chris@0 53
Chris@0 54 int inputSpacing = m_targetRate / m_gcd;
Chris@0 55 int outputSpacing = m_sourceRate / m_gcd;
Chris@0 56
Chris@4 57 #ifdef DEBUG_RESAMPLER
Chris@4 58 std::cerr << "resample " << m_sourceRate << " -> " << m_targetRate
Chris@4 59 << ": inputSpacing " << inputSpacing << ", outputSpacing "
Chris@4 60 << outputSpacing << ": filter length " << m_filterLength
Chris@4 61 << std::endl;
Chris@4 62 #endif
Chris@0 63
Chris@0 64 m_phaseData = new Phase[inputSpacing];
Chris@0 65
Chris@0 66 for (int phase = 0; phase < inputSpacing; ++phase) {
Chris@0 67
Chris@0 68 Phase p;
Chris@0 69
Chris@0 70 p.nextPhase = phase - outputSpacing;
Chris@0 71 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
Chris@0 72 p.nextPhase %= inputSpacing;
Chris@0 73
Chris@4 74 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
Chris@4 75 / inputSpacing));
Chris@0 76
Chris@4 77 int filtZipLength = int(ceil(double(m_filterLength - phase)
Chris@4 78 / inputSpacing));
Chris@0 79 for (int i = 0; i < filtZipLength; ++i) {
Chris@0 80 p.filter.push_back(filter[i * inputSpacing + phase]);
Chris@0 81 }
Chris@0 82
Chris@0 83 m_phaseData[phase] = p;
Chris@0 84 }
Chris@0 85
Chris@4 86 #ifdef DEBUG_RESAMPLER
Chris@4 87 for (int phase = 0; phase < inputSpacing; ++phase) {
Chris@4 88 std::cerr << "filter for phase " << phase << " of " << inputSpacing << " (with length " << m_phaseData[phase].filter.size() << "):";
Chris@4 89 for (int i = 0; i < m_phaseData[phase].filter.size(); ++i) {
Chris@4 90 if (i % 4 == 0) {
Chris@4 91 std::cerr << std::endl << i << ": ";
Chris@4 92 }
Chris@4 93 float v = m_phaseData[phase].filter[i];
Chris@4 94 if (v == 1) {
Chris@4 95 std::cerr << " *** " << v << " *** ";
Chris@4 96 } else {
Chris@4 97 std::cerr << v << " ";
Chris@4 98 }
Chris@4 99 }
Chris@4 100 std::cerr << std::endl;
Chris@4 101 }
Chris@4 102 #endif
Chris@4 103
Chris@0 104 delete[] filter;
Chris@0 105
Chris@0 106 // The May implementation of this uses a pull model -- we ask the
Chris@0 107 // resampler for a certain number of output samples, and it asks
Chris@0 108 // its source stream for as many as it needs to calculate
Chris@0 109 // those. This means (among other things) that the source stream
Chris@0 110 // can be asked for enough samples up-front to fill the buffer
Chris@0 111 // before the first output sample is generated.
Chris@0 112 //
Chris@0 113 // In this implementation we're using a push model in which a
Chris@0 114 // certain number of source samples is provided and we're asked
Chris@0 115 // for as many output samples as that makes available. But we
Chris@0 116 // can't return any samples from the beginning until half the
Chris@0 117 // filter length has been provided as input. This means we must
Chris@0 118 // either return a very variable number of samples (none at all
Chris@0 119 // until the filter fills, then half the filter length at once) or
Chris@0 120 // else have a lengthy declared latency on the output. We do the
Chris@0 121 // latter. (What do other implementations do?)
Chris@0 122
Chris@4 123 m_phase = (m_filterLength/2) % inputSpacing;
Chris@4 124
Chris@4 125 m_buffer = vector<double>(m_phaseData[0].filter.size(), 0);
Chris@4 126
Chris@4 127 m_latency =
Chris@4 128 ((m_buffer.size() * inputSpacing) - (m_filterLength/2)) / outputSpacing
Chris@4 129 + m_phase;
Chris@4 130
Chris@4 131 #ifdef DEBUG_RESAMPLER
Chris@4 132 std::cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
Chris@4 133 << ", latency " << m_latency << std::endl;
Chris@4 134 #endif
Chris@0 135 }
Chris@0 136
Chris@0 137 double
Chris@4 138 Resampler::reconstructOne()
Chris@0 139 {
Chris@0 140 Phase &pd = m_phaseData[m_phase];
Chris@0 141 double *filt = pd.filter.data();
Chris@4 142 double v = 0.0;
Chris@0 143 int n = pd.filter.size();
Chris@0 144 for (int i = 0; i < n; ++i) {
Chris@0 145 v += m_buffer[i] * filt[i];
Chris@0 146 }
Chris@2 147 m_buffer = vector<double>(m_buffer.begin() + pd.drop, m_buffer.end());
Chris@4 148 m_phase = pd.nextPhase;
Chris@0 149 return v;
Chris@0 150 }
Chris@0 151
Chris@0 152 int
Chris@4 153 Resampler::process(const double *src, double *dst, int n)
Chris@0 154 {
Chris@4 155 for (int i = 0; i < n; ++i) {
Chris@4 156 m_buffer.push_back(src[i]);
Chris@0 157 }
Chris@0 158
Chris@4 159 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
Chris@4 160 int outidx = 0;
Chris@2 161
Chris@4 162 #ifdef DEBUG_RESAMPLER
Chris@4 163 std::cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << std::endl;
Chris@4 164 #endif
Chris@4 165
Chris@4 166 while (outidx < maxout &&
Chris@4 167 m_buffer.size() >= m_phaseData[m_phase].filter.size()) {
Chris@4 168 dst[outidx] = reconstructOne();
Chris@4 169 outidx++;
Chris@2 170 }
Chris@4 171
Chris@4 172 return outidx;
Chris@0 173 }
Chris@4 174
Chris@1 175 std::vector<double>
Chris@1 176 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
Chris@1 177 {
Chris@1 178 Resampler r(sourceRate, targetRate);
Chris@1 179
Chris@1 180 int latency = r.getLatency();
Chris@1 181
Chris@4 182 int m = int(ceil(double(n * targetRate) / sourceRate));
Chris@1 183 int m1 = m + latency;
Chris@4 184 int n1 = int(double(m1 * sourceRate) / targetRate);
Chris@1 185
Chris@1 186 vector<double> pad(n1 - n, 0.0);
Chris@1 187 vector<double> out(m1, 0.0);
Chris@1 188
Chris@1 189 int got = r.process(data, out.data(), n);
Chris@1 190 got += r.process(pad.data(), out.data() + got, pad.size());
Chris@1 191
Chris@4 192 #ifdef DEBUG_RESAMPLER
Chris@4 193 std::cerr << "resample: " << n << " in, " << got << " out" << std::endl;
Chris@4 194 for (int i = 0; i < got; ++i) {
Chris@4 195 if (i % 5 == 0) std::cout << std::endl << i << "... ";
Chris@4 196 std::cout << (float) out[i] << " ";
Chris@4 197 }
Chris@4 198 std::cout << std::endl;
Chris@4 199 #endif
Chris@4 200
Chris@1 201 return vector<double>(out.begin() + latency, out.begin() + got);
Chris@1 202 }
Chris@1 203