annotate garage-resampler/Resampler.cpp @ 2:bda8d2e803ee

Save extra samples from one process to next (+ other fixes and debug out)
author Chris Cannam
date Mon, 14 Oct 2013 08:15:51 +0100
parents af48ddb3542a
children 58e0bf3f87e3
rev   line source
Chris@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@0 2
Chris@0 3 #include "Resampler.h"
Chris@0 4
Chris@0 5 #include "qm-dsp/maths/MathUtilities.h"
Chris@0 6 #include "qm-dsp/base/KaiserWindow.h"
Chris@0 7 #include "qm-dsp/base/SincWindow.h"
Chris@0 8
Chris@0 9 #include <iostream>
Chris@1 10 #include <vector>
Chris@1 11
Chris@1 12 using std::vector;
Chris@0 13
Chris@0 14 Resampler::Resampler(int sourceRate, int targetRate) :
Chris@0 15 m_sourceRate(sourceRate),
Chris@0 16 m_targetRate(targetRate)
Chris@0 17 {
Chris@0 18 initialise();
Chris@0 19 }
Chris@0 20
Chris@0 21 Resampler::~Resampler()
Chris@0 22 {
Chris@0 23 delete[] m_phaseData;
Chris@0 24 }
Chris@0 25
Chris@0 26 void
Chris@0 27 Resampler::initialise()
Chris@0 28 {
Chris@0 29 int higher = std::max(m_sourceRate, m_targetRate);
Chris@0 30 int lower = std::min(m_sourceRate, m_targetRate);
Chris@0 31
Chris@0 32 m_gcd = MathUtilities::gcd(lower, higher);
Chris@0 33
Chris@0 34 int peakToPole = higher / m_gcd;
Chris@0 35
Chris@0 36 KaiserWindow::Parameters params =
Chris@0 37 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
Chris@0 38
Chris@0 39 params.length =
Chris@0 40 (params.length % 2 == 0 ? params.length + 1 : params.length);
Chris@0 41
Chris@0 42 m_filterLength = params.length;
Chris@0 43
Chris@0 44 KaiserWindow kw(params);
Chris@0 45 SincWindow sw(m_filterLength, peakToPole * 2);
Chris@0 46
Chris@0 47 double *filter = new double[m_filterLength];
Chris@0 48 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
Chris@0 49 sw.cut(filter);
Chris@0 50 kw.cut(filter);
Chris@0 51
Chris@0 52 int inputSpacing = m_targetRate / m_gcd;
Chris@0 53 int outputSpacing = m_sourceRate / m_gcd;
Chris@0 54
Chris@0 55 m_latency = int((m_filterLength / 2) / outputSpacing);
Chris@0 56
Chris@2 57 int bufferLength = 0;
Chris@0 58
Chris@0 59 m_phaseData = new Phase[inputSpacing];
Chris@0 60
Chris@0 61 for (int phase = 0; phase < inputSpacing; ++phase) {
Chris@0 62
Chris@0 63 Phase p;
Chris@0 64
Chris@0 65 p.nextPhase = phase - outputSpacing;
Chris@0 66 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
Chris@0 67 p.nextPhase %= inputSpacing;
Chris@0 68
Chris@0 69 p.drop = int(ceil(std::max(0, outputSpacing - phase) / inputSpacing));
Chris@0 70 p.take = int((outputSpacing +
Chris@0 71 ((m_filterLength - 1 - phase) % inputSpacing))
Chris@0 72 / outputSpacing);
Chris@0 73
Chris@0 74 int filtZipLength = int(ceil((m_filterLength - phase) / inputSpacing));
Chris@2 75 if (filtZipLength > bufferLength) {
Chris@2 76 bufferLength = filtZipLength;
Chris@0 77 }
Chris@0 78
Chris@0 79 for (int i = 0; i < filtZipLength; ++i) {
Chris@0 80 p.filter.push_back(filter[i * inputSpacing + phase]);
Chris@0 81 }
Chris@0 82
Chris@0 83 m_phaseData[phase] = p;
Chris@0 84 }
Chris@0 85
Chris@0 86 delete[] filter;
Chris@0 87
Chris@0 88 // The May implementation of this uses a pull model -- we ask the
Chris@0 89 // resampler for a certain number of output samples, and it asks
Chris@0 90 // its source stream for as many as it needs to calculate
Chris@0 91 // those. This means (among other things) that the source stream
Chris@0 92 // can be asked for enough samples up-front to fill the buffer
Chris@0 93 // before the first output sample is generated.
Chris@0 94 //
Chris@0 95 // In this implementation we're using a push model in which a
Chris@0 96 // certain number of source samples is provided and we're asked
Chris@0 97 // for as many output samples as that makes available. But we
Chris@0 98 // can't return any samples from the beginning until half the
Chris@0 99 // filter length has been provided as input. This means we must
Chris@0 100 // either return a very variable number of samples (none at all
Chris@0 101 // until the filter fills, then half the filter length at once) or
Chris@0 102 // else have a lengthy declared latency on the output. We do the
Chris@0 103 // latter. (What do other implementations do?)
Chris@0 104
Chris@0 105 m_phase = m_filterLength % inputSpacing;
Chris@2 106 m_buffer = vector<double>(bufferLength, 0);
Chris@0 107 }
Chris@0 108
Chris@0 109 double
Chris@2 110 Resampler::reconstructOne(const double *src)
Chris@0 111 {
Chris@0 112 Phase &pd = m_phaseData[m_phase];
Chris@0 113 double *filt = pd.filter.data();
Chris@0 114 int n = pd.filter.size();
Chris@0 115 double v = 0.0;
Chris@0 116 for (int i = 0; i < n; ++i) {
Chris@0 117 v += m_buffer[i] * filt[i];
Chris@0 118 }
Chris@2 119 m_buffer = vector<double>(m_buffer.begin() + pd.drop, m_buffer.end());
Chris@2 120 for (int i = 0; i < pd.take; ++i) {
Chris@2 121 m_buffer.push_back(src[i]);
Chris@0 122 }
Chris@0 123 return v;
Chris@0 124 }
Chris@0 125
Chris@0 126 int
Chris@2 127 Resampler::process(const double *src, double *dst, int remaining)
Chris@0 128 {
Chris@0 129 int m = 0;
Chris@2 130 int offset = 0;
Chris@0 131
Chris@2 132 while (remaining >= m_phaseData[m_phase].take) {
Chris@2 133 std::cerr << "remaining = " << remaining << ", m = " << m << ", take = " << m_phaseData[m_phase].take << std::endl;
Chris@2 134 int advance = m_phaseData[m_phase].take;
Chris@2 135 dst[m] = reconstructOne(src + offset);
Chris@2 136 offset += advance;
Chris@2 137 remaining -= advance;
Chris@2 138 m_phase = m_phaseData[m_phase].nextPhase;
Chris@2 139 std::cerr << "remaining -> " << remaining << ", new phase has advance " << m_phaseData[m_phase].take << std::endl;
Chris@0 140 ++m;
Chris@0 141 }
Chris@0 142
Chris@2 143 if (remaining > 0) {
Chris@2 144 std::cerr << "have " << remaining << " spare, pushing to buffer" << std::endl;
Chris@2 145 }
Chris@2 146
Chris@2 147 for (int i = 0; i < remaining; ++i) {
Chris@2 148 m_buffer.push_back(src[offset + i]);
Chris@2 149 }
Chris@0 150
Chris@0 151 return m;
Chris@0 152 }
Chris@0 153
Chris@1 154 std::vector<double>
Chris@1 155 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
Chris@1 156 {
Chris@1 157 Resampler r(sourceRate, targetRate);
Chris@1 158
Chris@1 159 int latency = r.getLatency();
Chris@1 160
Chris@1 161 int m = int(ceil((n * targetRate) / sourceRate));
Chris@1 162 int m1 = m + latency;
Chris@1 163 int n1 = int((m1 * sourceRate) / targetRate);
Chris@1 164
Chris@1 165 vector<double> pad(n1 - n, 0.0);
Chris@1 166 vector<double> out(m1, 0.0);
Chris@1 167
Chris@1 168 int got = r.process(data, out.data(), n);
Chris@1 169 got += r.process(pad.data(), out.data() + got, pad.size());
Chris@1 170
Chris@1 171 return vector<double>(out.begin() + latency, out.begin() + got);
Chris@1 172 }
Chris@1 173