Chris@0: /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ Chris@0: Chris@0: #include "Resampler.h" Chris@0: Chris@0: #include "qm-dsp/maths/MathUtilities.h" Chris@0: #include "qm-dsp/base/KaiserWindow.h" Chris@0: #include "qm-dsp/base/SincWindow.h" Chris@0: Chris@0: #include Chris@1: #include Chris@1: Chris@1: using std::vector; Chris@0: Chris@0: Resampler::Resampler(int sourceRate, int targetRate) : Chris@0: m_sourceRate(sourceRate), Chris@0: m_targetRate(targetRate) Chris@0: { Chris@0: initialise(); Chris@0: } Chris@0: Chris@0: Resampler::~Resampler() Chris@0: { Chris@0: delete[] m_phaseData; Chris@0: } Chris@0: Chris@0: void Chris@0: Resampler::initialise() Chris@0: { Chris@0: int higher = std::max(m_sourceRate, m_targetRate); Chris@0: int lower = std::min(m_sourceRate, m_targetRate); Chris@0: Chris@0: m_gcd = MathUtilities::gcd(lower, higher); Chris@0: Chris@0: int peakToPole = higher / m_gcd; Chris@0: Chris@0: KaiserWindow::Parameters params = Chris@0: KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole); Chris@0: Chris@0: params.length = Chris@0: (params.length % 2 == 0 ? params.length + 1 : params.length); Chris@0: Chris@0: m_filterLength = params.length; Chris@0: Chris@0: KaiserWindow kw(params); Chris@0: SincWindow sw(m_filterLength, peakToPole * 2); Chris@0: Chris@0: double *filter = new double[m_filterLength]; Chris@0: for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0; Chris@0: sw.cut(filter); Chris@0: kw.cut(filter); Chris@0: Chris@0: int inputSpacing = m_targetRate / m_gcd; Chris@0: int outputSpacing = m_sourceRate / m_gcd; Chris@0: Chris@0: m_latency = int((m_filterLength / 2) / outputSpacing); Chris@0: Chris@2: int bufferLength = 0; Chris@0: Chris@0: m_phaseData = new Phase[inputSpacing]; Chris@0: Chris@0: for (int phase = 0; phase < inputSpacing; ++phase) { Chris@0: Chris@0: Phase p; Chris@0: Chris@0: p.nextPhase = phase - outputSpacing; Chris@0: while (p.nextPhase < 0) p.nextPhase += inputSpacing; Chris@0: p.nextPhase %= inputSpacing; Chris@0: Chris@0: p.drop = int(ceil(std::max(0, outputSpacing - phase) / inputSpacing)); Chris@0: p.take = int((outputSpacing + Chris@0: ((m_filterLength - 1 - phase) % inputSpacing)) Chris@0: / outputSpacing); Chris@0: Chris@0: int filtZipLength = int(ceil((m_filterLength - phase) / inputSpacing)); Chris@2: if (filtZipLength > bufferLength) { Chris@2: bufferLength = filtZipLength; Chris@0: } Chris@0: Chris@0: for (int i = 0; i < filtZipLength; ++i) { Chris@0: p.filter.push_back(filter[i * inputSpacing + phase]); Chris@0: } Chris@0: Chris@0: m_phaseData[phase] = p; Chris@0: } Chris@0: Chris@0: delete[] filter; Chris@0: Chris@0: // The May implementation of this uses a pull model -- we ask the Chris@0: // resampler for a certain number of output samples, and it asks Chris@0: // its source stream for as many as it needs to calculate Chris@0: // those. This means (among other things) that the source stream Chris@0: // can be asked for enough samples up-front to fill the buffer Chris@0: // before the first output sample is generated. Chris@0: // Chris@0: // In this implementation we're using a push model in which a Chris@0: // certain number of source samples is provided and we're asked Chris@0: // for as many output samples as that makes available. But we Chris@0: // can't return any samples from the beginning until half the Chris@0: // filter length has been provided as input. This means we must Chris@0: // either return a very variable number of samples (none at all Chris@0: // until the filter fills, then half the filter length at once) or Chris@0: // else have a lengthy declared latency on the output. We do the Chris@0: // latter. (What do other implementations do?) Chris@0: Chris@0: m_phase = m_filterLength % inputSpacing; Chris@2: m_buffer = vector(bufferLength, 0); Chris@0: } Chris@0: Chris@0: double Chris@2: Resampler::reconstructOne(const double *src) Chris@0: { Chris@0: Phase &pd = m_phaseData[m_phase]; Chris@0: double *filt = pd.filter.data(); Chris@0: int n = pd.filter.size(); Chris@0: double v = 0.0; Chris@0: for (int i = 0; i < n; ++i) { Chris@0: v += m_buffer[i] * filt[i]; Chris@0: } Chris@2: m_buffer = vector(m_buffer.begin() + pd.drop, m_buffer.end()); Chris@2: for (int i = 0; i < pd.take; ++i) { Chris@2: m_buffer.push_back(src[i]); Chris@0: } Chris@0: return v; Chris@0: } Chris@0: Chris@0: int Chris@2: Resampler::process(const double *src, double *dst, int remaining) Chris@0: { Chris@0: int m = 0; Chris@2: int offset = 0; Chris@0: Chris@2: while (remaining >= m_phaseData[m_phase].take) { Chris@2: std::cerr << "remaining = " << remaining << ", m = " << m << ", take = " << m_phaseData[m_phase].take << std::endl; Chris@2: int advance = m_phaseData[m_phase].take; Chris@2: dst[m] = reconstructOne(src + offset); Chris@2: offset += advance; Chris@2: remaining -= advance; Chris@2: m_phase = m_phaseData[m_phase].nextPhase; Chris@2: std::cerr << "remaining -> " << remaining << ", new phase has advance " << m_phaseData[m_phase].take << std::endl; Chris@0: ++m; Chris@0: } Chris@0: Chris@2: if (remaining > 0) { Chris@2: std::cerr << "have " << remaining << " spare, pushing to buffer" << std::endl; Chris@2: } Chris@2: Chris@2: for (int i = 0; i < remaining; ++i) { Chris@2: m_buffer.push_back(src[offset + i]); Chris@2: } Chris@0: Chris@0: return m; Chris@0: } Chris@0: Chris@1: std::vector Chris@1: Resampler::resample(int sourceRate, int targetRate, const double *data, int n) Chris@1: { Chris@1: Resampler r(sourceRate, targetRate); Chris@1: Chris@1: int latency = r.getLatency(); Chris@1: Chris@1: int m = int(ceil((n * targetRate) / sourceRate)); Chris@1: int m1 = m + latency; Chris@1: int n1 = int((m1 * sourceRate) / targetRate); Chris@1: Chris@1: vector pad(n1 - n, 0.0); Chris@1: vector out(m1, 0.0); Chris@1: Chris@1: int got = r.process(data, out.data(), n); Chris@1: got += r.process(pad.data(), out.data() + got, pad.size()); Chris@1: Chris@1: return vector(out.begin() + latency, out.begin() + got); Chris@1: } Chris@1: