annotate garage-resampler/Resampler.cpp @ 1:af48ddb3542a

Add one-shot resample function
author Chris Cannam
date Sun, 13 Oct 2013 12:47:50 +0100
parents 8dd4134043a1
children bda8d2e803ee
rev   line source
Chris@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@0 2
Chris@0 3 #include "Resampler.h"
Chris@0 4
Chris@0 5 #include "qm-dsp/maths/MathUtilities.h"
Chris@0 6 #include "qm-dsp/base/KaiserWindow.h"
Chris@0 7 #include "qm-dsp/base/SincWindow.h"
Chris@0 8
Chris@0 9 #include <iostream>
Chris@1 10 #include <vector>
Chris@1 11
Chris@1 12 using std::vector;
Chris@0 13
Chris@0 14 Resampler::Resampler(int sourceRate, int targetRate) :
Chris@0 15 m_sourceRate(sourceRate),
Chris@0 16 m_targetRate(targetRate)
Chris@0 17 {
Chris@0 18 initialise();
Chris@0 19 }
Chris@0 20
Chris@0 21 Resampler::~Resampler()
Chris@0 22 {
Chris@0 23 delete[] m_buffer;
Chris@0 24 delete[] m_phaseData;
Chris@0 25 }
Chris@0 26
Chris@0 27 void
Chris@0 28 Resampler::initialise()
Chris@0 29 {
Chris@0 30 int higher = std::max(m_sourceRate, m_targetRate);
Chris@0 31 int lower = std::min(m_sourceRate, m_targetRate);
Chris@0 32
Chris@0 33 m_gcd = MathUtilities::gcd(lower, higher);
Chris@0 34
Chris@0 35 int peakToPole = higher / m_gcd;
Chris@0 36
Chris@0 37 KaiserWindow::Parameters params =
Chris@0 38 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
Chris@0 39
Chris@0 40 params.length =
Chris@0 41 (params.length % 2 == 0 ? params.length + 1 : params.length);
Chris@0 42
Chris@0 43 m_filterLength = params.length;
Chris@0 44
Chris@0 45 KaiserWindow kw(params);
Chris@0 46 SincWindow sw(m_filterLength, peakToPole * 2);
Chris@0 47
Chris@0 48 double *filter = new double[m_filterLength];
Chris@0 49 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
Chris@0 50 sw.cut(filter);
Chris@0 51 kw.cut(filter);
Chris@0 52
Chris@0 53 int inputSpacing = m_targetRate / m_gcd;
Chris@0 54 int outputSpacing = m_sourceRate / m_gcd;
Chris@0 55
Chris@0 56 m_latency = int((m_filterLength / 2) / outputSpacing);
Chris@0 57
Chris@0 58 m_bufferLength = 0;
Chris@0 59
Chris@0 60 m_phaseData = new Phase[inputSpacing];
Chris@0 61
Chris@0 62 for (int phase = 0; phase < inputSpacing; ++phase) {
Chris@0 63
Chris@0 64 Phase p;
Chris@0 65
Chris@0 66 p.nextPhase = phase - outputSpacing;
Chris@0 67 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
Chris@0 68 p.nextPhase %= inputSpacing;
Chris@0 69
Chris@0 70 p.drop = int(ceil(std::max(0, outputSpacing - phase) / inputSpacing));
Chris@0 71 p.take = int((outputSpacing +
Chris@0 72 ((m_filterLength - 1 - phase) % inputSpacing))
Chris@0 73 / outputSpacing);
Chris@0 74
Chris@0 75 int filtZipLength = int(ceil((m_filterLength - phase) / inputSpacing));
Chris@0 76 if (filtZipLength > m_bufferLength) {
Chris@0 77 m_bufferLength = filtZipLength;
Chris@0 78 }
Chris@0 79
Chris@0 80 for (int i = 0; i < filtZipLength; ++i) {
Chris@0 81 p.filter.push_back(filter[i * inputSpacing + phase]);
Chris@0 82 }
Chris@0 83
Chris@0 84 m_phaseData[phase] = p;
Chris@0 85 }
Chris@0 86
Chris@0 87 delete[] filter;
Chris@0 88
Chris@0 89 // The May implementation of this uses a pull model -- we ask the
Chris@0 90 // resampler for a certain number of output samples, and it asks
Chris@0 91 // its source stream for as many as it needs to calculate
Chris@0 92 // those. This means (among other things) that the source stream
Chris@0 93 // can be asked for enough samples up-front to fill the buffer
Chris@0 94 // before the first output sample is generated.
Chris@0 95 //
Chris@0 96 // In this implementation we're using a push model in which a
Chris@0 97 // certain number of source samples is provided and we're asked
Chris@0 98 // for as many output samples as that makes available. But we
Chris@0 99 // can't return any samples from the beginning until half the
Chris@0 100 // filter length has been provided as input. This means we must
Chris@0 101 // either return a very variable number of samples (none at all
Chris@0 102 // until the filter fills, then half the filter length at once) or
Chris@0 103 // else have a lengthy declared latency on the output. We do the
Chris@0 104 // latter. (What do other implementations do?)
Chris@0 105
Chris@0 106 m_phase = m_filterLength % inputSpacing;
Chris@0 107 m_buffer = new double[m_bufferLength];
Chris@0 108 for (int i = 0; i < m_bufferLength; ++i) m_buffer[i] = 0.0;
Chris@0 109 }
Chris@0 110
Chris@0 111 double
Chris@0 112 Resampler::reconstructOne(const double **srcptr)
Chris@0 113 {
Chris@0 114 Phase &pd = m_phaseData[m_phase];
Chris@0 115 double *filt = pd.filter.data();
Chris@0 116 int n = pd.filter.size();
Chris@0 117 double v = 0.0;
Chris@0 118 for (int i = 0; i < n; ++i) {
Chris@0 119 v += m_buffer[i] * filt[i];
Chris@0 120 }
Chris@0 121 for (int i = pd.drop; i < n; ++i) {
Chris@0 122 m_buffer[i - pd.drop] = m_buffer[i];
Chris@0 123 }
Chris@0 124 for (int i = 0; i < pd.take; ++i) {
Chris@0 125 m_buffer[n - pd.drop + i] = **srcptr;
Chris@0 126 ++ *srcptr;
Chris@0 127 }
Chris@0 128 m_phase = pd.nextPhase;
Chris@0 129 return v;
Chris@0 130 }
Chris@0 131
Chris@0 132 int
Chris@0 133 Resampler::process(const double *src, double *dst, int n)
Chris@0 134 {
Chris@0 135 int m = 0;
Chris@0 136 const double *srcptr = src;
Chris@0 137
Chris@0 138 while (n > m_phaseData[m_phase].take) {
Chris@0 139 std::cerr << "n = " << n << ", m = " << m << ", take = " << m_phaseData[m_phase].take << std::endl;
Chris@0 140 n -= m_phaseData[m_phase].take;
Chris@0 141 dst[m] = reconstructOne(&srcptr);
Chris@0 142 std::cerr << "n -> " << n << std::endl;
Chris@0 143 ++m;
Chris@0 144 }
Chris@0 145
Chris@0 146 //!!! save any excess
Chris@0 147
Chris@0 148 return m;
Chris@0 149 }
Chris@0 150
Chris@1 151 std::vector<double>
Chris@1 152 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
Chris@1 153 {
Chris@1 154 Resampler r(sourceRate, targetRate);
Chris@1 155
Chris@1 156 int latency = r.getLatency();
Chris@1 157
Chris@1 158 int m = int(ceil((n * targetRate) / sourceRate));
Chris@1 159 int m1 = m + latency;
Chris@1 160 int n1 = int((m1 * sourceRate) / targetRate);
Chris@1 161
Chris@1 162 vector<double> pad(n1 - n, 0.0);
Chris@1 163 vector<double> out(m1, 0.0);
Chris@1 164
Chris@1 165 int got = r.process(data, out.data(), n);
Chris@1 166 got += r.process(pad.data(), out.data() + got, pad.size());
Chris@1 167
Chris@1 168 return vector<double>(out.begin() + latency, out.begin() + got);
Chris@1 169 }
Chris@1 170