annotate garage-resampler/Resampler.cpp @ 6:f55097c5d69f

Some fixes, and start on spectrum test
author Chris Cannam
date Tue, 15 Oct 2013 18:27:19 +0100
parents 8ed638d62713
children 94c1cadc6caf
rev   line source
Chris@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@0 2
Chris@0 3 #include "Resampler.h"
Chris@0 4
Chris@0 5 #include "qm-dsp/maths/MathUtilities.h"
Chris@0 6 #include "qm-dsp/base/KaiserWindow.h"
Chris@0 7 #include "qm-dsp/base/SincWindow.h"
Chris@0 8
Chris@0 9 #include <iostream>
Chris@1 10 #include <vector>
Chris@1 11
Chris@1 12 using std::vector;
Chris@0 13
Chris@4 14 //#define DEBUG_RESAMPLER 1
Chris@4 15
Chris@0 16 Resampler::Resampler(int sourceRate, int targetRate) :
Chris@0 17 m_sourceRate(sourceRate),
Chris@0 18 m_targetRate(targetRate)
Chris@0 19 {
Chris@0 20 initialise();
Chris@0 21 }
Chris@0 22
Chris@0 23 Resampler::~Resampler()
Chris@0 24 {
Chris@0 25 delete[] m_phaseData;
Chris@0 26 }
Chris@0 27
Chris@0 28 void
Chris@0 29 Resampler::initialise()
Chris@0 30 {
Chris@0 31 int higher = std::max(m_sourceRate, m_targetRate);
Chris@0 32 int lower = std::min(m_sourceRate, m_targetRate);
Chris@0 33
Chris@0 34 m_gcd = MathUtilities::gcd(lower, higher);
Chris@0 35
Chris@0 36 int peakToPole = higher / m_gcd;
Chris@0 37
Chris@0 38 KaiserWindow::Parameters params =
Chris@0 39 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
Chris@0 40
Chris@0 41 params.length =
Chris@0 42 (params.length % 2 == 0 ? params.length + 1 : params.length);
Chris@0 43
Chris@0 44 m_filterLength = params.length;
Chris@0 45
Chris@6 46 std::cerr << "making filter... ";
Chris@0 47 KaiserWindow kw(params);
Chris@0 48 SincWindow sw(m_filterLength, peakToPole * 2);
Chris@6 49 std::cerr << "done" << std::endl;
Chris@0 50
Chris@0 51 double *filter = new double[m_filterLength];
Chris@0 52 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
Chris@0 53 sw.cut(filter);
Chris@0 54 kw.cut(filter);
Chris@0 55
Chris@0 56 int inputSpacing = m_targetRate / m_gcd;
Chris@0 57 int outputSpacing = m_sourceRate / m_gcd;
Chris@0 58
Chris@4 59 #ifdef DEBUG_RESAMPLER
Chris@4 60 std::cerr << "resample " << m_sourceRate << " -> " << m_targetRate
Chris@4 61 << ": inputSpacing " << inputSpacing << ", outputSpacing "
Chris@4 62 << outputSpacing << ": filter length " << m_filterLength
Chris@4 63 << std::endl;
Chris@4 64 #endif
Chris@0 65
Chris@0 66 m_phaseData = new Phase[inputSpacing];
Chris@0 67
Chris@0 68 for (int phase = 0; phase < inputSpacing; ++phase) {
Chris@0 69
Chris@0 70 Phase p;
Chris@0 71
Chris@0 72 p.nextPhase = phase - outputSpacing;
Chris@0 73 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
Chris@0 74 p.nextPhase %= inputSpacing;
Chris@0 75
Chris@4 76 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
Chris@4 77 / inputSpacing));
Chris@0 78
Chris@4 79 int filtZipLength = int(ceil(double(m_filterLength - phase)
Chris@4 80 / inputSpacing));
Chris@0 81 for (int i = 0; i < filtZipLength; ++i) {
Chris@0 82 p.filter.push_back(filter[i * inputSpacing + phase]);
Chris@0 83 }
Chris@0 84
Chris@0 85 m_phaseData[phase] = p;
Chris@0 86 }
Chris@0 87
Chris@4 88 #ifdef DEBUG_RESAMPLER
Chris@4 89 for (int phase = 0; phase < inputSpacing; ++phase) {
Chris@4 90 std::cerr << "filter for phase " << phase << " of " << inputSpacing << " (with length " << m_phaseData[phase].filter.size() << "):";
Chris@4 91 for (int i = 0; i < m_phaseData[phase].filter.size(); ++i) {
Chris@4 92 if (i % 4 == 0) {
Chris@4 93 std::cerr << std::endl << i << ": ";
Chris@4 94 }
Chris@4 95 float v = m_phaseData[phase].filter[i];
Chris@4 96 if (v == 1) {
Chris@4 97 std::cerr << " *** " << v << " *** ";
Chris@4 98 } else {
Chris@4 99 std::cerr << v << " ";
Chris@4 100 }
Chris@4 101 }
Chris@4 102 std::cerr << std::endl;
Chris@4 103 }
Chris@4 104 #endif
Chris@4 105
Chris@0 106 delete[] filter;
Chris@0 107
Chris@0 108 // The May implementation of this uses a pull model -- we ask the
Chris@0 109 // resampler for a certain number of output samples, and it asks
Chris@0 110 // its source stream for as many as it needs to calculate
Chris@0 111 // those. This means (among other things) that the source stream
Chris@0 112 // can be asked for enough samples up-front to fill the buffer
Chris@0 113 // before the first output sample is generated.
Chris@0 114 //
Chris@0 115 // In this implementation we're using a push model in which a
Chris@0 116 // certain number of source samples is provided and we're asked
Chris@0 117 // for as many output samples as that makes available. But we
Chris@0 118 // can't return any samples from the beginning until half the
Chris@0 119 // filter length has been provided as input. This means we must
Chris@0 120 // either return a very variable number of samples (none at all
Chris@0 121 // until the filter fills, then half the filter length at once) or
Chris@0 122 // else have a lengthy declared latency on the output. We do the
Chris@0 123 // latter. (What do other implementations do?)
Chris@0 124
Chris@4 125 m_phase = (m_filterLength/2) % inputSpacing;
Chris@4 126
Chris@4 127 m_buffer = vector<double>(m_phaseData[0].filter.size(), 0);
Chris@4 128
Chris@4 129 m_latency =
Chris@4 130 ((m_buffer.size() * inputSpacing) - (m_filterLength/2)) / outputSpacing
Chris@4 131 + m_phase;
Chris@4 132
Chris@4 133 #ifdef DEBUG_RESAMPLER
Chris@4 134 std::cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
Chris@4 135 << ", latency " << m_latency << std::endl;
Chris@4 136 #endif
Chris@0 137 }
Chris@0 138
Chris@0 139 double
Chris@4 140 Resampler::reconstructOne()
Chris@0 141 {
Chris@0 142 Phase &pd = m_phaseData[m_phase];
Chris@4 143 double v = 0.0;
Chris@0 144 int n = pd.filter.size();
Chris@6 145 const double *buf = m_buffer.data();
Chris@6 146 const double *filt = pd.filter.data();
Chris@0 147 for (int i = 0; i < n; ++i) {
Chris@6 148 v += buf[i] * filt[i]; //!!! gcc can't vectorize: why?
Chris@0 149 }
Chris@2 150 m_buffer = vector<double>(m_buffer.begin() + pd.drop, m_buffer.end());
Chris@4 151 m_phase = pd.nextPhase;
Chris@0 152 return v;
Chris@0 153 }
Chris@0 154
Chris@0 155 int
Chris@4 156 Resampler::process(const double *src, double *dst, int n)
Chris@0 157 {
Chris@4 158 for (int i = 0; i < n; ++i) {
Chris@4 159 m_buffer.push_back(src[i]);
Chris@0 160 }
Chris@0 161
Chris@4 162 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
Chris@4 163 int outidx = 0;
Chris@2 164
Chris@4 165 #ifdef DEBUG_RESAMPLER
Chris@4 166 std::cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << std::endl;
Chris@4 167 #endif
Chris@4 168
Chris@5 169 double scaleFactor = 1.0;
Chris@5 170 if (m_targetRate < m_sourceRate) {
Chris@5 171 scaleFactor = double(m_targetRate) / double(m_sourceRate);
Chris@5 172 }
Chris@5 173
Chris@6 174 std::cerr << "maxout = " << maxout << std::endl;
Chris@6 175
Chris@4 176 while (outidx < maxout &&
Chris@4 177 m_buffer.size() >= m_phaseData[m_phase].filter.size()) {
Chris@5 178 dst[outidx] = scaleFactor * reconstructOne();
Chris@4 179 outidx++;
Chris@2 180 }
Chris@4 181
Chris@4 182 return outidx;
Chris@0 183 }
Chris@4 184
Chris@1 185 std::vector<double>
Chris@1 186 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
Chris@1 187 {
Chris@1 188 Resampler r(sourceRate, targetRate);
Chris@1 189
Chris@1 190 int latency = r.getLatency();
Chris@1 191
Chris@6 192 // latency is the output latency. We need to provide enough
Chris@6 193 // padding input samples at the end of input to guarantee at
Chris@6 194 // *least* the latency's worth of output samples. that is,
Chris@6 195
Chris@6 196 int inputPad = int(ceil(double(latency * sourceRate) / targetRate));
Chris@6 197
Chris@6 198 std::cerr << "latency = " << latency << ", inputPad = " << inputPad << std::endl;
Chris@6 199
Chris@6 200 // that means we are providing this much input in total:
Chris@6 201
Chris@6 202 int n1 = n + inputPad;
Chris@6 203
Chris@6 204 // and obtaining this much output in total:
Chris@6 205
Chris@6 206 int m1 = int(ceil(double(n1 * targetRate) / sourceRate));
Chris@6 207
Chris@6 208 // in order to return this much output to the user:
Chris@6 209
Chris@4 210 int m = int(ceil(double(n * targetRate) / sourceRate));
Chris@6 211
Chris@6 212 std::cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << std::endl;
Chris@1 213
Chris@1 214 vector<double> pad(n1 - n, 0.0);
Chris@6 215 vector<double> out(m1 + 1, 0.0);
Chris@1 216
Chris@1 217 int got = r.process(data, out.data(), n);
Chris@1 218 got += r.process(pad.data(), out.data() + got, pad.size());
Chris@1 219
Chris@4 220 #ifdef DEBUG_RESAMPLER
Chris@4 221 std::cerr << "resample: " << n << " in, " << got << " out" << std::endl;
Chris@4 222 for (int i = 0; i < got; ++i) {
Chris@4 223 if (i % 5 == 0) std::cout << std::endl << i << "... ";
Chris@4 224 std::cout << (float) out[i] << " ";
Chris@4 225 }
Chris@4 226 std::cout << std::endl;
Chris@4 227 #endif
Chris@4 228
Chris@6 229 int toReturn = got - latency;
Chris@6 230 if (toReturn > m) toReturn = m;
Chris@6 231
Chris@6 232 return vector<double>(out.begin() + latency,
Chris@6 233 out.begin() + latency + toReturn);
Chris@1 234 }
Chris@1 235