annotate TempogramPlugin.cpp @ 55:7a29d9ecd7d6

Added tag v1.0 for changeset 180624d62a4c
author Chris Cannam
date Thu, 16 Oct 2014 14:22:15 +0100
parents 180624d62a4c
children f1c128d0f78c
rev   line source
Chris@43 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@0 2
Chris@43 3 /*
Chris@43 4 Vamp Tempogram Plugin
Chris@43 5 Carl Bussey, Centre for Digital Music, Queen Mary University of London
Chris@43 6 Copyright 2014 Queen Mary University of London.
Chris@43 7
Chris@43 8 This program is free software; you can redistribute it and/or
Chris@43 9 modify it under the terms of the GNU General Public License as
Chris@43 10 published by the Free Software Foundation; either version 2 of the
Chris@43 11 License, or (at your option) any later version. See the file
Chris@43 12 COPYING included with this distribution for more information.
Chris@43 13 */
c@0 14
c@14 15 #include "TempogramPlugin.h"
c@25 16
c@0 17 using Vamp::FFT;
c@7 18 using Vamp::RealTime;
c@0 19 using namespace std;
c@0 20
c@14 21 TempogramPlugin::TempogramPlugin(float inputSampleRate) :
c@0 22 Plugin(inputSampleRate),
c@18 23 m_inputBlockSize(0), //host parameter
c@18 24 m_inputStepSize(0), //host parameter
c@29 25 m_noveltyCurveMinDB(-74), //parameter
c@29 26 m_noveltyCurveMinV(0), //set in initialise()
c@18 27 m_noveltyCurveCompressionConstant(1000), //parameter
c@18 28 m_tempogramLog2WindowLength(10), //parameter
c@29 29 m_tempogramWindowLength(0), //set in initialise()
c@18 30 m_tempogramLog2FftLength(m_tempogramLog2WindowLength), //parameter
c@29 31 m_tempogramFftLength(0), //set in initialise()
c@18 32 m_tempogramLog2HopSize(6), //parameter
c@29 33 m_tempogramHopSize(0), //set in initialise()
c@18 34 m_tempogramMinBPM(30), //parameter
c@18 35 m_tempogramMaxBPM(480), //parameter
c@18 36 m_tempogramMinBin(0), //set in initialise()
c@18 37 m_tempogramMaxBin(0), //set in initialise()
c@29 38 m_tempogramMinLag(0), //set in initialise()
c@29 39 m_tempogramMaxLag(0), //set in initialise()
c@18 40 m_cyclicTempogramMinBPM(30), //reset in initialise()
c@18 41 m_cyclicTempogramNumberOfOctaves(0), //set in initialise()
c@49 42 m_cyclicTempogramOctaveDivider(30), //parameter
c@50 43 m_cyclicTempogramReferenceBPM(60) //parameter
c@0 44
c@0 45 // Also be sure to set your plugin parameters (presumably stored
c@0 46 // in member variables) to their default values here -- the host
c@0 47 // will not do that for you
c@0 48 {
c@0 49 }
c@0 50
c@14 51 TempogramPlugin::~TempogramPlugin()
c@0 52 {
c@0 53 //delete stuff
c@0 54 }
c@0 55
c@0 56 string
c@14 57 TempogramPlugin::getIdentifier() const
c@0 58 {
c@0 59 return "tempogram";
c@0 60 }
c@0 61
c@0 62 string
c@14 63 TempogramPlugin::getName() const
c@0 64 {
c@0 65 return "Tempogram";
c@0 66 }
c@0 67
c@0 68 string
c@14 69 TempogramPlugin::getDescription() const
c@0 70 {
c@0 71 return "Cyclic Tempogram as described by Peter Grosche and Meinard Muller";
c@0 72 }
c@0 73
c@0 74 string
c@14 75 TempogramPlugin::getMaker() const
c@0 76 {
c@0 77 return "Carl Bussey";
c@0 78 }
c@0 79
c@0 80 int
c@14 81 TempogramPlugin::getPluginVersion() const
c@0 82 {
c@0 83 return 1;
c@0 84 }
c@0 85
c@0 86 string
c@14 87 TempogramPlugin::getCopyright() const
c@0 88 {
Chris@40 89 return "Copyright 2014 Queen Mary University of London. GPL licence.";
c@0 90 }
c@0 91
c@14 92 TempogramPlugin::InputDomain
c@14 93 TempogramPlugin::getInputDomain() const
c@0 94 {
c@0 95 return FrequencyDomain;
c@0 96 }
c@0 97
c@0 98 size_t
c@14 99 TempogramPlugin::getPreferredBlockSize() const
c@0 100 {
c@9 101 return 2048; // 0 means "I can handle any block size"
c@0 102 }
c@0 103
c@0 104 size_t
c@14 105 TempogramPlugin::getPreferredStepSize() const
c@0 106 {
c@9 107 return 1024; // 0 means "anything sensible"; in practice this
c@0 108 // means the same as the block size for TimeDomain
c@0 109 // plugins, or half of it for FrequencyDomain plugins
c@0 110 }
c@0 111
c@0 112 size_t
c@14 113 TempogramPlugin::getMinChannelCount() const
c@0 114 {
c@0 115 return 1;
c@0 116 }
c@0 117
c@0 118 size_t
c@14 119 TempogramPlugin::getMaxChannelCount() const
c@0 120 {
c@0 121 return 1;
c@0 122 }
c@0 123
c@14 124 TempogramPlugin::ParameterList
c@14 125 TempogramPlugin::getParameterDescriptors() const
c@0 126 {
c@0 127 ParameterList list;
c@0 128
c@0 129 // If the plugin has no adjustable parameters, return an empty
c@0 130 // list here (and there's no need to provide implementations of
c@0 131 // getParameter and setParameter in that case either).
c@0 132
c@0 133 // Note that it is your responsibility to make sure the parameters
c@0 134 // start off having their default values (e.g. in the constructor
c@0 135 // above). The host needs to know the default value so it can do
c@0 136 // things like provide a "reset to default" function, but it will
c@0 137 // not explicitly set your parameters to their defaults for you if
c@0 138 // they have not changed in the mean time.
c@0 139
c@14 140 ParameterDescriptor d1;
c@14 141 d1.identifier = "C";
c@15 142 d1.name = "Novelty Curve Spectrogram Compression Constant";
c@14 143 d1.description = "Spectrogram compression constant, C, used when retrieving the novelty curve from the audio.";
c@14 144 d1.unit = "";
c@14 145 d1.minValue = 2;
c@14 146 d1.maxValue = 10000;
c@14 147 d1.defaultValue = 1000;
c@14 148 d1.isQuantized = false;
c@14 149 list.push_back(d1);
c@29 150
c@29 151 ParameterDescriptor d2;
c@29 152 d2.identifier = "minDB";
c@29 153 d2.name = "Novelty Curve Minimum DB";
c@29 154 d2.description = "Spectrogram minimum DB used when removing unwanted peaks in the Spectrogram when retrieving the novelty curve from the audio.";
c@29 155 d2.unit = "";
c@29 156 d2.minValue = -100;
c@29 157 d2.maxValue = -50;
c@29 158 d2.defaultValue = -74;
c@29 159 d2.isQuantized = false;
c@29 160 list.push_back(d2);
c@9 161
c@14 162 ParameterDescriptor d3;
c@29 163 d3.identifier = "log2TN";
c@29 164 d3.name = "Tempogram Window Length";
c@29 165 d3.description = "FFT window length when analysing the novelty curve and extracting the tempogram time-frequency function.";
c@14 166 d3.unit = "";
c@29 167 d3.minValue = 7;
c@14 168 d3.maxValue = 12;
c@29 169 d3.defaultValue = 10;
c@14 170 d3.isQuantized = true;
c@14 171 d3.quantizeStep = 1;
c@14 172 for (int i = d3.minValue; i <= d3.maxValue; i++){
c@14 173 d3.valueNames.push_back(floatToString(pow((float)2,(float)i)));
c@14 174 }
c@14 175 list.push_back(d3);
c@9 176
c@14 177 ParameterDescriptor d4;
c@29 178 d4.identifier = "log2HopSize";
c@29 179 d4.name = "Tempogram Hopsize";
c@29 180 d4.description = "FFT hopsize when analysing the novelty curve and extracting the tempogram time-frequency function.";
c@14 181 d4.unit = "";
c@14 182 d4.minValue = 6;
c@14 183 d4.maxValue = 12;
c@29 184 d4.defaultValue = 6;
c@14 185 d4.isQuantized = true;
c@14 186 d4.quantizeStep = 1;
c@14 187 for (int i = d4.minValue; i <= d4.maxValue; i++){
c@14 188 d4.valueNames.push_back(floatToString(pow((float)2,(float)i)));
c@14 189 }
c@14 190 list.push_back(d4);
c@14 191
c@14 192 ParameterDescriptor d5;
c@29 193 d5.identifier = "log2FftLength";
c@29 194 d5.name = "Tempogram FFT Length";
c@29 195 d5.description = "FFT length when analysing the novelty curve and extracting the tempogram time-frequency function. This parameter determines the amount of zero padding.";
c@14 196 d5.unit = "";
c@29 197 d5.minValue = 6;
c@29 198 d5.maxValue = 12;
Chris@42 199 d5.defaultValue = 10;
c@14 200 d5.isQuantized = true;
c@29 201 d5.quantizeStep = 1;
c@29 202 for (int i = d5.minValue; i <= d5.maxValue; i++){
Chris@41 203 d5.valueNames.push_back(floatToString(pow((float)2,(float)i)));
c@29 204 }
c@14 205 list.push_back(d5);
c@14 206
c@14 207 ParameterDescriptor d6;
c@29 208 d6.identifier = "minBPM";
c@29 209 d6.name = "(Cyclic) Tempogram Minimum BPM";
c@29 210 d6.description = "The minimum BPM of the tempogram output bins.";
c@14 211 d6.unit = "";
c@29 212 d6.minValue = 0;
c@14 213 d6.maxValue = 2000;
c@29 214 d6.defaultValue = 30;
c@14 215 d6.isQuantized = true;
c@14 216 d6.quantizeStep = 5;
c@14 217 list.push_back(d6);
c@18 218
c@18 219 ParameterDescriptor d7;
c@29 220 d7.identifier = "maxBPM";
c@29 221 d7.name = "(Cyclic) Tempogram Maximum BPM";
c@29 222 d7.description = "The maximum BPM of the tempogram output bins.";
c@18 223 d7.unit = "";
c@29 224 d7.minValue = 30;
c@29 225 d7.maxValue = 2000;
c@29 226 d7.defaultValue = 480;
c@18 227 d7.isQuantized = true;
c@29 228 d7.quantizeStep = 5;
c@18 229 list.push_back(d7);
c@29 230
c@29 231 ParameterDescriptor d8;
c@29 232 d8.identifier = "octDiv";
c@29 233 d8.name = "Cyclic Tempogram Octave Divider";
c@29 234 d8.description = "The number bins within each octave.";
c@29 235 d8.unit = "";
c@29 236 d8.minValue = 5;
c@29 237 d8.maxValue = 60;
c@29 238 d8.defaultValue = 30;
c@29 239 d8.isQuantized = true;
c@29 240 d8.quantizeStep = 1;
c@29 241 list.push_back(d8);
c@51 242
c@51 243 ParameterDescriptor d9;
Chris@53 244 d9.identifier = "refBPM";
Chris@53 245 d9.name = "Cyclic Tempogram Reference Tempo";
Chris@53 246 d9.description = "The reference tempo used when calculating the Cyclic Tempogram parameter \'s\'.";
Chris@53 247 d9.unit = "";
Chris@54 248 d9.minValue = 30;
Chris@54 249 d9.maxValue = 120;
Chris@53 250 d9.defaultValue = 60;
Chris@53 251 d9.isQuantized = true;
Chris@53 252 d9.quantizeStep = 1;
Chris@53 253 list.push_back(d9);
c@0 254
c@0 255 return list;
c@0 256 }
c@0 257
c@0 258 float
c@14 259 TempogramPlugin::getParameter(string identifier) const
c@0 260 {
c@0 261 if (identifier == "C") {
c@18 262 return m_noveltyCurveCompressionConstant; // return the ACTUAL current value of your parameter here!
c@0 263 }
c@29 264 else if (identifier == "minDB"){
c@29 265 return m_noveltyCurveMinDB;
c@29 266 }
c@14 267 else if (identifier == "log2TN"){
c@18 268 return m_tempogramLog2WindowLength;
c@9 269 }
c@14 270 else if (identifier == "log2HopSize"){
c@18 271 return m_tempogramLog2HopSize;
c@14 272 }
c@14 273 else if (identifier == "log2FftLength"){
c@18 274 return m_tempogramLog2FftLength;
c@14 275 }
c@14 276 else if (identifier == "minBPM") {
c@18 277 return m_tempogramMinBPM;
c@9 278 }
c@14 279 else if (identifier == "maxBPM"){
c@18 280 return m_tempogramMaxBPM;
c@18 281 }
c@18 282 else if (identifier == "octDiv"){
c@18 283 return m_cyclicTempogramOctaveDivider;
c@0 284 }
c@51 285 else if (identifier == "refBPM"){
c@51 286 return m_cyclicTempogramReferenceBPM;
c@51 287 }
c@0 288
c@0 289 return 0;
c@0 290 }
c@0 291
c@0 292 void
c@14 293 TempogramPlugin::setParameter(string identifier, float value)
c@0 294 {
c@9 295
c@0 296 if (identifier == "C") {
c@18 297 m_noveltyCurveCompressionConstant = value; // set the actual value of your parameter
c@0 298 }
c@29 299 else if (identifier == "minDB"){
c@29 300 m_noveltyCurveMinDB = value;
c@29 301 }
c@14 302 else if (identifier == "log2TN") {
c@18 303 m_tempogramLog2WindowLength = value;
c@0 304 }
c@14 305 else if (identifier == "log2HopSize"){
c@30 306 m_tempogramLog2HopSize = value;
c@14 307 }
c@18 308 else if (identifier == "log2FftLength"){
c@30 309 m_tempogramLog2FftLength = value;
c@14 310 }
c@14 311 else if (identifier == "minBPM") {
c@18 312 m_tempogramMinBPM = value;
c@9 313 }
c@14 314 else if (identifier == "maxBPM"){
c@18 315 m_tempogramMaxBPM = value;
c@18 316 }
c@18 317 else if (identifier == "octDiv"){
c@18 318 m_cyclicTempogramOctaveDivider = value;
c@9 319 }
c@51 320 else if (identifier == "refBPM"){
c@51 321 m_cyclicTempogramReferenceBPM = value;
c@51 322 }
c@9 323
c@9 324 }
c@9 325
c@14 326 TempogramPlugin::ProgramList
c@14 327 TempogramPlugin::getPrograms() const
c@0 328 {
c@0 329 ProgramList list;
c@0 330
c@0 331 // If you have no programs, return an empty list (or simply don't
c@0 332 // implement this function or getCurrentProgram/selectProgram)
c@0 333
c@0 334 return list;
c@0 335 }
c@0 336
c@0 337 string
c@14 338 TempogramPlugin::getCurrentProgram() const
c@0 339 {
c@0 340 return ""; // no programs
c@0 341 }
c@0 342
c@0 343 void
c@14 344 TempogramPlugin::selectProgram(string name)
c@0 345 {
c@0 346 }
c@0 347
c@14 348 TempogramPlugin::OutputList
c@14 349 TempogramPlugin::getOutputDescriptors() const
c@0 350 {
c@0 351 OutputList list;
c@0 352
c@0 353 // See OutputDescriptor documentation for the possibilities here.
c@0 354 // Every plugin must have at least one output.
c@1 355
c@7 356 float d_sampleRate;
c@18 357 float tempogramInputSampleRate = (float)m_inputSampleRate/m_inputStepSize;
c@25 358 OutputDescriptor d1;
c@25 359 d1.identifier = "cyclicTempogram";
c@25 360 d1.name = "Cyclic Tempogram";
Chris@43 361 d1.description = "Cyclic tempogram calculated by \"octave folding\" the DFT tempogram";
c@25 362 d1.unit = "";
c@25 363 d1.hasFixedBinCount = true;
c@25 364 d1.binCount = m_cyclicTempogramOctaveDivider > 0 && !isnan(m_cyclicTempogramOctaveDivider) ? m_cyclicTempogramOctaveDivider : 0;
c@25 365 d1.hasKnownExtents = false;
c@25 366 d1.isQuantized = false;
c@25 367 d1.sampleType = OutputDescriptor::FixedSampleRate;
c@25 368 d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize;
c@25 369 d1.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0;
c@51 370 vector< vector <unsigned int> > logBins = calculateTempogramNearestNeighbourLogBins();
c@51 371 if (!logBins.empty()){
c@52 372 float scale = pow(2,ceil(log2(60/binToBPM(logBins[0][0]))));
c@52 373 for(int i = 0; i < m_cyclicTempogramOctaveDivider; i++){
c@52 374 float s = scale*binToBPM(logBins[0][i])/m_cyclicTempogramReferenceBPM;
c@51 375 d1.binNames.push_back(floatToString(s));
c@51 376 //cerr << m_cyclicTempogramOctaveDivider << " " << s << endl;
c@51 377 }
c@51 378 }
c@25 379 d1.hasDuration = false;
c@25 380 list.push_back(d1);
c@25 381
c@25 382 OutputDescriptor d2;
c@25 383 d2.identifier = "tempogramDFT";
c@25 384 d2.name = "Tempogram via DFT";
Chris@43 385 d2.description = "Tempogram calculated using Discrete Fourier Transform method";
Chris@43 386 d2.unit = ""; // unit of bin contents, not of "bin label", so not bpm
c@25 387 d2.hasFixedBinCount = true;
c@25 388 d2.binCount = m_tempogramMaxBin - m_tempogramMinBin + 1;
c@25 389 d2.hasKnownExtents = false;
c@25 390 d2.isQuantized = false;
c@25 391 d2.sampleType = OutputDescriptor::FixedSampleRate;
c@25 392 d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize;
c@25 393 d2.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0.0;
c@25 394 for(int i = m_tempogramMinBin; i <= (int)m_tempogramMaxBin; i++){
c@25 395 float w = ((float)i/m_tempogramFftLength)*(tempogramInputSampleRate);
c@25 396 d2.binNames.push_back(floatToString(w*60));
c@25 397 }
c@25 398 d2.hasDuration = false;
c@25 399 list.push_back(d2);
c@25 400
c@21 401 OutputDescriptor d3;
c@25 402 d3.identifier = "tempogramACT";
c@25 403 d3.name = "Tempogram via ACT";
Chris@43 404 d3.description = "Tempogram calculated using autocorrelation method";
Chris@43 405 d3.unit = ""; // unit of bin contents, not of "bin label", so not bpm
c@21 406 d3.hasFixedBinCount = true;
c@28 407 d3.binCount = m_tempogramMaxLag - m_tempogramMinLag + 1;
c@21 408 d3.hasKnownExtents = false;
c@21 409 d3.isQuantized = false;
c@21 410 d3.sampleType = OutputDescriptor::FixedSampleRate;
c@21 411 d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize;
c@25 412 d3.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0.0;
c@28 413 for(int lag = m_tempogramMaxLag; lag >= (int)m_tempogramMinLag; lag--){
c@28 414 d3.binNames.push_back(floatToString(60/(m_inputStepSize*(lag/m_inputSampleRate))));
c@25 415 }
c@21 416 d3.hasDuration = false;
c@21 417 list.push_back(d3);
c@21 418
c@25 419 OutputDescriptor d4;
c@25 420 d4.identifier = "nc";
c@25 421 d4.name = "Novelty Curve";
Chris@43 422 d4.description = "Novelty curve underlying the tempogram calculations";
c@25 423 d4.unit = "";
c@25 424 d4.hasFixedBinCount = true;
c@25 425 d4.binCount = 1;
c@25 426 d4.hasKnownExtents = false;
c@25 427 d4.isQuantized = false;
c@25 428 d4.sampleType = OutputDescriptor::FixedSampleRate;
c@9 429 d_sampleRate = tempogramInputSampleRate;
c@25 430 d4.sampleRate = d_sampleRate > 0 && !isnan(d_sampleRate) ? d_sampleRate : 0;
c@25 431 d4.hasDuration = false;
c@25 432 list.push_back(d4);
c@18 433
c@0 434 return list;
c@0 435 }
c@0 436
c@20 437 bool
c@20 438 TempogramPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize)
c@20 439 {
c@20 440 if (channels < getMinChannelCount() ||
c@20 441 channels > getMaxChannelCount()) return false;
c@20 442
c@20 443 // Real initialisation work goes here!
c@20 444 m_inputBlockSize = blockSize;
c@20 445 m_inputStepSize = stepSize;
c@20 446
c@24 447 //m_spectrogram = Spectrogram(m_inputBlockSize/2 + 1);
c@21 448 if (!handleParameterValues()) return false;
c@19 449 //cout << m_cyclicTempogramOctaveDivider << endl;
c@4 450
c@0 451 return true;
c@0 452 }
c@0 453
c@0 454 void
c@14 455 TempogramPlugin::reset()
c@0 456 {
c@0 457 // Clear buffers, reset stored values, etc
c@19 458 m_spectrogram.clear();
c@21 459 handleParameterValues();
c@0 460 }
c@0 461
c@14 462 TempogramPlugin::FeatureSet
c@14 463 TempogramPlugin::process(const float *const *inputBuffers, Vamp::RealTime timestamp)
c@0 464 {
c@23 465 int n = m_inputBlockSize/2 + 1;
c@0 466 const float *in = inputBuffers[0];
c@3 467
c@9 468 //calculate magnitude of FrequencyDomain input
c@22 469 vector<float> fftCoefficients;
c@23 470 for (int i = 0; i < n; i++){
c@0 471 float magnitude = sqrt(in[2*i] * in[2*i] + in[2*i + 1] * in[2*i + 1]);
c@29 472 magnitude = magnitude > m_noveltyCurveMinV ? magnitude : m_noveltyCurveMinV;
c@22 473 fftCoefficients.push_back(magnitude);
c@0 474 }
c@22 475 m_spectrogram.push_back(fftCoefficients);
c@24 476 //m_spectrogram.push_back(fftCoefficients);
c@21 477
c@23 478 return FeatureSet();
c@0 479 }
c@0 480
c@14 481 TempogramPlugin::FeatureSet
c@14 482 TempogramPlugin::getRemainingFeatures()
c@11 483 {
c@0 484
c@18 485 float * hannWindow = new float[m_tempogramWindowLength];
c@20 486 for (int i = 0; i < (int)m_tempogramWindowLength; i++){
c@14 487 hannWindow[i] = 0.0;
c@4 488 }
c@11 489
c@1 490 FeatureSet featureSet;
c@0 491
c@19 492 //initialise novelty curve processor
c@23 493 int numberOfBlocks = m_spectrogram.size();
Chris@48 494
c@22 495 NoveltyCurveProcessor nc(m_inputSampleRate, m_inputBlockSize, m_noveltyCurveCompressionConstant);
c@21 496 vector<float> noveltyCurve = nc.spectrogramToNoveltyCurve(m_spectrogram); //calculate novelty curvefrom magnitude data
c@4 497
c@9 498 //push novelty curve data to featureset 1 and set timestamps
c@23 499 for (int i = 0; i < numberOfBlocks; i++){
c@19 500 Feature noveltyCurveFeature;
c@19 501 noveltyCurveFeature.values.push_back(noveltyCurve[i]);
c@19 502 noveltyCurveFeature.hasTimestamp = false;
c@25 503 featureSet[3].push_back(noveltyCurveFeature);
c@21 504 assert(!isnan(noveltyCurveFeature.values.back()));
c@4 505 }
c@4 506
c@9 507 //window function for spectrogram
c@18 508 WindowFunction::hanning(hannWindow, m_tempogramWindowLength);
c@9 509
c@9 510 //initialise spectrogram processor
c@18 511 SpectrogramProcessor spectrogramProcessor(m_tempogramWindowLength, m_tempogramFftLength, m_tempogramHopSize);
c@9 512 //compute spectrogram from novelty curve data (i.e., tempogram)
c@25 513 Tempogram tempogramDFT = spectrogramProcessor.process(&noveltyCurve[0], numberOfBlocks, hannWindow);
c@18 514 delete []hannWindow;
c@18 515 hannWindow = 0;
c@0 516
c@25 517 int tempogramLength = tempogramDFT.size();
c@7 518
c@9 519 //push tempogram data to featureset 0 and set timestamps.
c@7 520 for (int block = 0; block < tempogramLength; block++){
c@25 521 Feature tempogramDFTFeature;
c@28 522
c@28 523 assert(tempogramDFT[block].size() == (m_tempogramFftLength/2 + 1));
c@28 524 for(int k = m_tempogramMinBin; k <= (int)m_tempogramMaxBin; k++){
c@28 525 tempogramDFTFeature.values.push_back(tempogramDFT[block][k]);
c@28 526 }
c@28 527 tempogramDFTFeature.hasTimestamp = false;
c@28 528 featureSet[1].push_back(tempogramDFTFeature);
c@28 529 }
c@28 530
c@28 531 AutocorrelationProcessor autocorrelationProcessor(m_tempogramWindowLength, m_tempogramHopSize);
c@28 532 Tempogram tempogramACT = autocorrelationProcessor.process(&noveltyCurve[0], numberOfBlocks);
c@28 533
c@28 534 for (int block = 0; block < tempogramLength; block++){
c@25 535 Feature tempogramACTFeature;
Chris@44 536
c@28 537 for(int k = m_tempogramMaxLag; k >= (int)m_tempogramMinLag; k--){
c@25 538 tempogramACTFeature.values.push_back(tempogramACT[block][k]);
c@0 539 }
c@25 540 tempogramACTFeature.hasTimestamp = false;
c@25 541 featureSet[2].push_back(tempogramACTFeature);
c@0 542 }
c@0 543
c@18 544 //Calculate cyclic tempogram
c@22 545 vector< vector<unsigned int> > logBins = calculateTempogramNearestNeighbourLogBins();
c@18 546
c@22 547 //assert((int)logBins.size() == m_cyclicTempogramOctaveDivider*m_cyclicTempogramNumberOfOctaves);
c@18 548 for (int block = 0; block < tempogramLength; block++){
c@19 549 Feature cyclicTempogramFeature;
c@18 550
c@23 551 for (int i = 0; i < m_cyclicTempogramOctaveDivider; i++){
c@18 552 float sum = 0;
c@21 553
c@23 554 for (int j = 0; j < m_cyclicTempogramNumberOfOctaves; j++){
Chris@48 555 sum += tempogramDFT[block][logBins[j][i]];
c@18 556 }
c@19 557 cyclicTempogramFeature.values.push_back(sum/m_cyclicTempogramNumberOfOctaves);
c@21 558 assert(!isnan(cyclicTempogramFeature.values.back()));
c@18 559 }
c@18 560
c@19 561 cyclicTempogramFeature.hasTimestamp = false;
c@21 562 featureSet[0].push_back(cyclicTempogramFeature);
c@18 563 }
c@0 564
c@0 565 return featureSet;
c@0 566 }
c@22 567
c@22 568 vector< vector<unsigned int> > TempogramPlugin::calculateTempogramNearestNeighbourLogBins() const
c@22 569 {
c@22 570 vector< vector<unsigned int> > logBins;
c@22 571
c@22 572 for (int octave = 0; octave < (int)m_cyclicTempogramNumberOfOctaves; octave++){
c@22 573 vector<unsigned int> octaveBins;
Chris@47 574
c@22 575 for (int bin = 0; bin < (int)m_cyclicTempogramOctaveDivider; bin++){
c@22 576 float bpm = m_cyclicTempogramMinBPM*pow(2.0f, octave+(float)bin/m_cyclicTempogramOctaveDivider);
c@22 577 octaveBins.push_back(bpmToBin(bpm));
c@22 578 }
c@22 579 logBins.push_back(octaveBins);
c@22 580 }
c@22 581
c@22 582 return logBins;
c@22 583 }
c@22 584
c@22 585 unsigned int TempogramPlugin::bpmToBin(const float &bpm) const
c@22 586 {
c@22 587 float w = (float)bpm/60;
c@22 588 float sampleRate = m_inputSampleRate/m_inputStepSize;
c@22 589 int bin = floor((float)m_tempogramFftLength*w/sampleRate + 0.5);
c@22 590
c@22 591 if(bin < 0) bin = 0;
Chris@46 592 else if(bin > m_tempogramFftLength/2.0f) bin = m_tempogramFftLength/2.0f;
c@22 593
c@22 594 return bin;
c@22 595 }
c@22 596
c@22 597 float TempogramPlugin::binToBPM(const int &bin) const
c@22 598 {
c@22 599 float sampleRate = m_inputSampleRate/m_inputStepSize;
c@22 600
c@22 601 return (bin*sampleRate/m_tempogramFftLength)*60;
c@22 602 }
c@22 603
c@22 604 bool TempogramPlugin::handleParameterValues(){
c@22 605
Chris@42 606 if (m_tempogramLog2HopSize <= 0) {
Chris@42 607 cerr << "Tempogram log2 hop size " << m_tempogramLog2HopSize
Chris@42 608 << " <= 0, failing initialise" << endl;
Chris@42 609 return false;
Chris@42 610 }
Chris@42 611 if (m_tempogramLog2FftLength <= 0) {
Chris@42 612 cerr << "Tempogram log2 fft length " << m_tempogramLog2FftLength
Chris@42 613 << " <= 0, failing initialise" << endl;
Chris@42 614 return false;
Chris@42 615 }
c@22 616
Chris@42 617 if (m_tempogramMinBPM < 1) {
Chris@42 618 m_tempogramMinBPM = 1;
Chris@42 619 }
c@22 620 if (m_tempogramMinBPM >= m_tempogramMaxBPM){
c@22 621 m_tempogramMinBPM = 30;
c@22 622 m_tempogramMaxBPM = 480;
c@22 623 }
c@22 624
c@29 625 m_noveltyCurveMinV = pow(10,(float)m_noveltyCurveMinDB/20);
c@29 626
c@29 627 m_tempogramWindowLength = pow(2,m_tempogramLog2WindowLength);
c@29 628 m_tempogramHopSize = pow(2,m_tempogramLog2HopSize);
c@29 629 m_tempogramFftLength = pow(2,m_tempogramLog2FftLength);
c@29 630
c@30 631 if (m_tempogramFftLength < m_tempogramWindowLength){
c@30 632 m_tempogramFftLength = m_tempogramWindowLength;
c@30 633 }
c@30 634
c@22 635 float tempogramInputSampleRate = (float)m_inputSampleRate/m_inputStepSize;
c@28 636 m_tempogramMinBin = (max((int)floor(((m_tempogramMinBPM/60)/tempogramInputSampleRate)*m_tempogramFftLength), 0));
c@28 637 m_tempogramMaxBin = (min((int)ceil(((m_tempogramMaxBPM/60)/tempogramInputSampleRate)*m_tempogramFftLength), (int)(m_tempogramFftLength/2)));
Chris@32 638
Chris@32 639 if (m_tempogramMaxBin < m_tempogramMinBin) {
Chris@32 640 cerr << "At audio sample rate " << m_inputSampleRate
Chris@32 641 << ", tempogram sample rate " << tempogramInputSampleRate
Chris@32 642 << " with bpm range " << m_tempogramMinBPM << " -> "
Chris@32 643 << m_tempogramMaxBPM << ", min bin = " << m_tempogramMinBin
Chris@32 644 << " > max bin " << m_tempogramMaxBin
Chris@32 645 << ": can't proceed, failing initialise" << endl;
Chris@32 646 return false;
Chris@32 647 }
c@28 648
c@28 649 m_tempogramMinLag = max((int)ceil((60/(m_inputStepSize * m_tempogramMaxBPM))*m_inputSampleRate), 0);
Chris@45 650 m_tempogramMaxLag = min((int)floor((60/(m_inputStepSize * m_tempogramMinBPM))*m_inputSampleRate), (int)m_tempogramWindowLength-1);
Chris@32 651
Chris@32 652 if (m_tempogramMaxLag < m_tempogramMinLag) {
Chris@32 653 cerr << "At audio sample rate " << m_inputSampleRate
Chris@32 654 << ", tempogram sample rate " << tempogramInputSampleRate
Chris@42 655 << ", window length " << m_tempogramWindowLength
Chris@32 656 << " with bpm range " << m_tempogramMinBPM << " -> "
Chris@42 657 << m_tempogramMaxBPM << ", min lag = " << m_tempogramMinLag
Chris@42 658 << " > max lag " << m_tempogramMaxLag
Chris@32 659 << ": can't proceed, failing initialise" << endl;
Chris@32 660 return false;
Chris@32 661 }
c@22 662
Chris@47 663 m_cyclicTempogramMinBPM = max(binToBPM(m_tempogramMinBin), m_tempogramMinBPM);
Chris@47 664 float cyclicTempogramMaxBPM = min(binToBPM(m_tempogramMaxBin), m_tempogramMaxBPM);
Chris@47 665
c@22 666 m_cyclicTempogramNumberOfOctaves = floor(log2(cyclicTempogramMaxBPM/m_cyclicTempogramMinBPM));
Chris@42 667
Chris@42 668 if (m_cyclicTempogramNumberOfOctaves < 1) {
Chris@42 669 cerr << "At audio sample rate " << m_inputSampleRate
Chris@42 670 << ", tempogram sample rate " << tempogramInputSampleRate
Chris@42 671 << " with bpm range " << m_tempogramMinBPM << " -> "
Chris@42 672 << m_tempogramMaxBPM << ", cyclic tempogram min bpm = "
Chris@42 673 << m_cyclicTempogramMinBPM << " and max bpm = "
Chris@42 674 << cyclicTempogramMaxBPM << " giving number of octaves = "
Chris@42 675 << m_cyclicTempogramNumberOfOctaves
Chris@42 676 << ": can't proceed, failing initialise" << endl;
Chris@42 677 return false;
Chris@42 678 }
c@22 679
c@22 680 return true;
c@22 681 }
c@22 682
c@22 683 string TempogramPlugin::floatToString(float value) const
c@22 684 {
c@22 685 ostringstream ss;
c@22 686
c@22 687 if(!(ss << value)) throw runtime_error("TempogramPlugin::floatToString(): invalid conversion from float to string");
c@22 688 return ss.str();
c@22 689 }