annotate TempogramPlugin.cpp @ 41:89af6709f562

Fix (the) two errors reported by Coverity Scan
author Chris Cannam
date Fri, 12 Sep 2014 16:00:26 +0100
parents df696e57a150
children d4b74059a005
rev   line source
c@0 1
c@0 2 // This is a skeleton file for use in creating your own plugin
c@0 3 // libraries. Replace MyPlugin and myPlugin throughout with the name
c@0 4 // of your first plugin class, and fill in the gaps as appropriate.
c@0 5
c@0 6
c@14 7 #include "TempogramPlugin.h"
c@25 8
c@4 9
c@0 10 using Vamp::FFT;
c@7 11 using Vamp::RealTime;
c@0 12 using namespace std;
c@0 13
c@14 14 TempogramPlugin::TempogramPlugin(float inputSampleRate) :
c@0 15 Plugin(inputSampleRate),
c@18 16 m_inputBlockSize(0), //host parameter
c@18 17 m_inputStepSize(0), //host parameter
c@29 18 m_noveltyCurveMinDB(-74), //parameter
c@29 19 m_noveltyCurveMinV(0), //set in initialise()
c@18 20 m_noveltyCurveCompressionConstant(1000), //parameter
c@18 21 m_tempogramLog2WindowLength(10), //parameter
c@29 22 m_tempogramWindowLength(0), //set in initialise()
c@18 23 m_tempogramLog2FftLength(m_tempogramLog2WindowLength), //parameter
c@29 24 m_tempogramFftLength(0), //set in initialise()
c@18 25 m_tempogramLog2HopSize(6), //parameter
c@29 26 m_tempogramHopSize(0), //set in initialise()
c@18 27 m_tempogramMinBPM(30), //parameter
c@18 28 m_tempogramMaxBPM(480), //parameter
c@18 29 m_tempogramMinBin(0), //set in initialise()
c@18 30 m_tempogramMaxBin(0), //set in initialise()
c@29 31 m_tempogramMinLag(0), //set in initialise()
c@29 32 m_tempogramMaxLag(0), //set in initialise()
c@18 33 m_cyclicTempogramMinBPM(30), //reset in initialise()
c@18 34 m_cyclicTempogramNumberOfOctaves(0), //set in initialise()
c@18 35 m_cyclicTempogramOctaveDivider(30) //parameter
c@0 36
c@0 37 // Also be sure to set your plugin parameters (presumably stored
c@0 38 // in member variables) to their default values here -- the host
c@0 39 // will not do that for you
c@0 40 {
c@0 41 }
c@0 42
c@14 43 TempogramPlugin::~TempogramPlugin()
c@0 44 {
c@0 45 //delete stuff
c@0 46 }
c@0 47
c@0 48 string
c@14 49 TempogramPlugin::getIdentifier() const
c@0 50 {
c@0 51 return "tempogram";
c@0 52 }
c@0 53
c@0 54 string
c@14 55 TempogramPlugin::getName() const
c@0 56 {
c@0 57 return "Tempogram";
c@0 58 }
c@0 59
c@0 60 string
c@14 61 TempogramPlugin::getDescription() const
c@0 62 {
c@0 63 return "Cyclic Tempogram as described by Peter Grosche and Meinard Muller";
c@0 64 }
c@0 65
c@0 66 string
c@14 67 TempogramPlugin::getMaker() const
c@0 68 {
c@0 69 return "Carl Bussey";
c@0 70 }
c@0 71
c@0 72 int
c@14 73 TempogramPlugin::getPluginVersion() const
c@0 74 {
c@0 75 return 1;
c@0 76 }
c@0 77
c@0 78 string
c@14 79 TempogramPlugin::getCopyright() const
c@0 80 {
Chris@40 81 return "Copyright 2014 Queen Mary University of London. GPL licence.";
c@0 82 }
c@0 83
c@14 84 TempogramPlugin::InputDomain
c@14 85 TempogramPlugin::getInputDomain() const
c@0 86 {
c@0 87 return FrequencyDomain;
c@0 88 }
c@0 89
c@0 90 size_t
c@14 91 TempogramPlugin::getPreferredBlockSize() const
c@0 92 {
c@9 93 return 2048; // 0 means "I can handle any block size"
c@0 94 }
c@0 95
c@0 96 size_t
c@14 97 TempogramPlugin::getPreferredStepSize() const
c@0 98 {
c@9 99 return 1024; // 0 means "anything sensible"; in practice this
c@0 100 // means the same as the block size for TimeDomain
c@0 101 // plugins, or half of it for FrequencyDomain plugins
c@0 102 }
c@0 103
c@0 104 size_t
c@14 105 TempogramPlugin::getMinChannelCount() const
c@0 106 {
c@0 107 return 1;
c@0 108 }
c@0 109
c@0 110 size_t
c@14 111 TempogramPlugin::getMaxChannelCount() const
c@0 112 {
c@0 113 return 1;
c@0 114 }
c@0 115
c@14 116 TempogramPlugin::ParameterList
c@14 117 TempogramPlugin::getParameterDescriptors() const
c@0 118 {
c@0 119 ParameterList list;
c@0 120
c@0 121 // If the plugin has no adjustable parameters, return an empty
c@0 122 // list here (and there's no need to provide implementations of
c@0 123 // getParameter and setParameter in that case either).
c@0 124
c@0 125 // Note that it is your responsibility to make sure the parameters
c@0 126 // start off having their default values (e.g. in the constructor
c@0 127 // above). The host needs to know the default value so it can do
c@0 128 // things like provide a "reset to default" function, but it will
c@0 129 // not explicitly set your parameters to their defaults for you if
c@0 130 // they have not changed in the mean time.
c@0 131
c@14 132 ParameterDescriptor d1;
c@14 133 d1.identifier = "C";
c@15 134 d1.name = "Novelty Curve Spectrogram Compression Constant";
c@14 135 d1.description = "Spectrogram compression constant, C, used when retrieving the novelty curve from the audio.";
c@14 136 d1.unit = "";
c@14 137 d1.minValue = 2;
c@14 138 d1.maxValue = 10000;
c@14 139 d1.defaultValue = 1000;
c@14 140 d1.isQuantized = false;
c@14 141 list.push_back(d1);
c@29 142
c@29 143 ParameterDescriptor d2;
c@29 144 d2.identifier = "minDB";
c@29 145 d2.name = "Novelty Curve Minimum DB";
c@29 146 d2.description = "Spectrogram minimum DB used when removing unwanted peaks in the Spectrogram when retrieving the novelty curve from the audio.";
c@29 147 d2.unit = "";
c@29 148 d2.minValue = -100;
c@29 149 d2.maxValue = -50;
c@29 150 d2.defaultValue = -74;
c@29 151 d2.isQuantized = false;
c@29 152 list.push_back(d2);
c@9 153
c@14 154 ParameterDescriptor d3;
c@29 155 d3.identifier = "log2TN";
c@29 156 d3.name = "Tempogram Window Length";
c@29 157 d3.description = "FFT window length when analysing the novelty curve and extracting the tempogram time-frequency function.";
c@14 158 d3.unit = "";
c@29 159 d3.minValue = 7;
c@14 160 d3.maxValue = 12;
c@29 161 d3.defaultValue = 10;
c@14 162 d3.isQuantized = true;
c@14 163 d3.quantizeStep = 1;
c@14 164 for (int i = d3.minValue; i <= d3.maxValue; i++){
c@14 165 d3.valueNames.push_back(floatToString(pow((float)2,(float)i)));
c@14 166 }
c@14 167 list.push_back(d3);
c@9 168
c@14 169 ParameterDescriptor d4;
c@29 170 d4.identifier = "log2HopSize";
c@29 171 d4.name = "Tempogram Hopsize";
c@29 172 d4.description = "FFT hopsize when analysing the novelty curve and extracting the tempogram time-frequency function.";
c@14 173 d4.unit = "";
c@14 174 d4.minValue = 6;
c@14 175 d4.maxValue = 12;
c@29 176 d4.defaultValue = 6;
c@14 177 d4.isQuantized = true;
c@14 178 d4.quantizeStep = 1;
c@14 179 for (int i = d4.minValue; i <= d4.maxValue; i++){
c@14 180 d4.valueNames.push_back(floatToString(pow((float)2,(float)i)));
c@14 181 }
c@14 182 list.push_back(d4);
c@14 183
c@14 184 ParameterDescriptor d5;
c@29 185 d5.identifier = "log2FftLength";
c@29 186 d5.name = "Tempogram FFT Length";
c@29 187 d5.description = "FFT length when analysing the novelty curve and extracting the tempogram time-frequency function. This parameter determines the amount of zero padding.";
c@14 188 d5.unit = "";
c@29 189 d5.minValue = 6;
c@29 190 d5.maxValue = 12;
c@29 191 d5.defaultValue = d2.defaultValue;
c@14 192 d5.isQuantized = true;
c@29 193 d5.quantizeStep = 1;
c@29 194 for (int i = d5.minValue; i <= d5.maxValue; i++){
Chris@41 195 d5.valueNames.push_back(floatToString(pow((float)2,(float)i)));
c@29 196 }
c@14 197 list.push_back(d5);
c@14 198
c@14 199 ParameterDescriptor d6;
c@29 200 d6.identifier = "minBPM";
c@29 201 d6.name = "(Cyclic) Tempogram Minimum BPM";
c@29 202 d6.description = "The minimum BPM of the tempogram output bins.";
c@14 203 d6.unit = "";
c@29 204 d6.minValue = 0;
c@14 205 d6.maxValue = 2000;
c@29 206 d6.defaultValue = 30;
c@14 207 d6.isQuantized = true;
c@14 208 d6.quantizeStep = 5;
c@14 209 list.push_back(d6);
c@18 210
c@18 211 ParameterDescriptor d7;
c@29 212 d7.identifier = "maxBPM";
c@29 213 d7.name = "(Cyclic) Tempogram Maximum BPM";
c@29 214 d7.description = "The maximum BPM of the tempogram output bins.";
c@18 215 d7.unit = "";
c@29 216 d7.minValue = 30;
c@29 217 d7.maxValue = 2000;
c@29 218 d7.defaultValue = 480;
c@18 219 d7.isQuantized = true;
c@29 220 d7.quantizeStep = 5;
c@18 221 list.push_back(d7);
c@29 222
c@29 223 ParameterDescriptor d8;
c@29 224 d8.identifier = "octDiv";
c@29 225 d8.name = "Cyclic Tempogram Octave Divider";
c@29 226 d8.description = "The number bins within each octave.";
c@29 227 d8.unit = "";
c@29 228 d8.minValue = 5;
c@29 229 d8.maxValue = 60;
c@29 230 d8.defaultValue = 30;
c@29 231 d8.isQuantized = true;
c@29 232 d8.quantizeStep = 1;
c@29 233 list.push_back(d8);
c@0 234
c@0 235 return list;
c@0 236 }
c@0 237
c@0 238 float
c@14 239 TempogramPlugin::getParameter(string identifier) const
c@0 240 {
c@0 241 if (identifier == "C") {
c@18 242 return m_noveltyCurveCompressionConstant; // return the ACTUAL current value of your parameter here!
c@0 243 }
c@29 244 else if (identifier == "minDB"){
c@29 245 return m_noveltyCurveMinDB;
c@29 246 }
c@14 247 else if (identifier == "log2TN"){
c@18 248 return m_tempogramLog2WindowLength;
c@9 249 }
c@14 250 else if (identifier == "log2HopSize"){
c@18 251 return m_tempogramLog2HopSize;
c@14 252 }
c@14 253 else if (identifier == "log2FftLength"){
c@18 254 return m_tempogramLog2FftLength;
c@14 255 }
c@14 256 else if (identifier == "minBPM") {
c@18 257 return m_tempogramMinBPM;
c@9 258 }
c@14 259 else if (identifier == "maxBPM"){
c@18 260 return m_tempogramMaxBPM;
c@18 261 }
c@18 262 else if (identifier == "octDiv"){
c@18 263 return m_cyclicTempogramOctaveDivider;
c@0 264 }
c@0 265
c@0 266 return 0;
c@0 267 }
c@0 268
c@0 269 void
c@14 270 TempogramPlugin::setParameter(string identifier, float value)
c@0 271 {
c@9 272
c@0 273 if (identifier == "C") {
c@18 274 m_noveltyCurveCompressionConstant = value; // set the actual value of your parameter
c@0 275 }
c@29 276 else if (identifier == "minDB"){
c@29 277 m_noveltyCurveMinDB = value;
c@29 278 }
c@14 279 else if (identifier == "log2TN") {
c@18 280 m_tempogramLog2WindowLength = value;
c@0 281 }
c@14 282 else if (identifier == "log2HopSize"){
c@30 283 m_tempogramLog2HopSize = value;
c@14 284 }
c@18 285 else if (identifier == "log2FftLength"){
c@30 286 m_tempogramLog2FftLength = value;
c@14 287 }
c@14 288 else if (identifier == "minBPM") {
c@18 289 m_tempogramMinBPM = value;
c@9 290 }
c@14 291 else if (identifier == "maxBPM"){
c@18 292 m_tempogramMaxBPM = value;
c@18 293 }
c@18 294 else if (identifier == "octDiv"){
c@18 295 m_cyclicTempogramOctaveDivider = value;
c@9 296 }
c@9 297
c@9 298 }
c@9 299
c@14 300 TempogramPlugin::ProgramList
c@14 301 TempogramPlugin::getPrograms() const
c@0 302 {
c@0 303 ProgramList list;
c@0 304
c@0 305 // If you have no programs, return an empty list (or simply don't
c@0 306 // implement this function or getCurrentProgram/selectProgram)
c@0 307
c@0 308 return list;
c@0 309 }
c@0 310
c@0 311 string
c@14 312 TempogramPlugin::getCurrentProgram() const
c@0 313 {
c@0 314 return ""; // no programs
c@0 315 }
c@0 316
c@0 317 void
c@14 318 TempogramPlugin::selectProgram(string name)
c@0 319 {
c@0 320 }
c@0 321
c@14 322 TempogramPlugin::OutputList
c@14 323 TempogramPlugin::getOutputDescriptors() const
c@0 324 {
c@0 325 OutputList list;
c@0 326
c@0 327 // See OutputDescriptor documentation for the possibilities here.
c@0 328 // Every plugin must have at least one output.
c@1 329
c@7 330 float d_sampleRate;
c@18 331 float tempogramInputSampleRate = (float)m_inputSampleRate/m_inputStepSize;
c@7 332
c@25 333 OutputDescriptor d1;
c@25 334 d1.identifier = "cyclicTempogram";
c@25 335 d1.name = "Cyclic Tempogram";
c@25 336 d1.description = "Cyclic Tempogram";
c@25 337 d1.unit = "";
c@25 338 d1.hasFixedBinCount = true;
c@25 339 d1.binCount = m_cyclicTempogramOctaveDivider > 0 && !isnan(m_cyclicTempogramOctaveDivider) ? m_cyclicTempogramOctaveDivider : 0;
c@25 340 d1.hasKnownExtents = false;
c@25 341 d1.isQuantized = false;
c@25 342 d1.sampleType = OutputDescriptor::FixedSampleRate;
c@25 343 d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize;
c@25 344 d1.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0;
c@25 345 d1.hasDuration = false;
c@25 346 list.push_back(d1);
c@25 347
c@25 348 OutputDescriptor d2;
c@25 349 d2.identifier = "tempogramDFT";
c@25 350 d2.name = "Tempogram via DFT";
c@25 351 d2.description = "Tempogram via DFT";
c@25 352 d2.unit = "BPM";
c@25 353 d2.hasFixedBinCount = true;
c@25 354 d2.binCount = m_tempogramMaxBin - m_tempogramMinBin + 1;
c@25 355 d2.hasKnownExtents = false;
c@25 356 d2.isQuantized = false;
c@25 357 d2.sampleType = OutputDescriptor::FixedSampleRate;
c@25 358 d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize;
c@25 359 d2.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0.0;
c@25 360 for(int i = m_tempogramMinBin; i <= (int)m_tempogramMaxBin; i++){
c@25 361 float w = ((float)i/m_tempogramFftLength)*(tempogramInputSampleRate);
c@25 362 d2.binNames.push_back(floatToString(w*60));
c@25 363 }
c@25 364 d2.hasDuration = false;
c@25 365 list.push_back(d2);
c@25 366
c@21 367 OutputDescriptor d3;
c@25 368 d3.identifier = "tempogramACT";
c@25 369 d3.name = "Tempogram via ACT";
c@25 370 d3.description = "Tempogram via ACT";
c@25 371 d3.unit = "BPM";
c@21 372 d3.hasFixedBinCount = true;
c@28 373 d3.binCount = m_tempogramMaxLag - m_tempogramMinLag + 1;
c@21 374 d3.hasKnownExtents = false;
c@21 375 d3.isQuantized = false;
c@21 376 d3.sampleType = OutputDescriptor::FixedSampleRate;
c@21 377 d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize;
c@25 378 d3.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0.0;
c@28 379 for(int lag = m_tempogramMaxLag; lag >= (int)m_tempogramMinLag; lag--){
c@28 380 d3.binNames.push_back(floatToString(60/(m_inputStepSize*(lag/m_inputSampleRate))));
c@25 381 }
c@21 382 d3.hasDuration = false;
c@21 383 list.push_back(d3);
c@21 384
c@25 385 OutputDescriptor d4;
c@25 386 d4.identifier = "nc";
c@25 387 d4.name = "Novelty Curve";
c@25 388 d4.description = "Novelty Curve";
c@25 389 d4.unit = "";
c@25 390 d4.hasFixedBinCount = true;
c@25 391 d4.binCount = 1;
c@25 392 d4.hasKnownExtents = false;
c@25 393 d4.isQuantized = false;
c@25 394 d4.sampleType = OutputDescriptor::FixedSampleRate;
c@9 395 d_sampleRate = tempogramInputSampleRate;
c@25 396 d4.sampleRate = d_sampleRate > 0 && !isnan(d_sampleRate) ? d_sampleRate : 0;
c@25 397 d4.hasDuration = false;
c@25 398 list.push_back(d4);
c@18 399
c@0 400 return list;
c@0 401 }
c@0 402
c@20 403 bool
c@20 404 TempogramPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize)
c@20 405 {
c@20 406 if (channels < getMinChannelCount() ||
c@20 407 channels > getMaxChannelCount()) return false;
c@20 408
c@20 409 // Real initialisation work goes here!
c@20 410 m_inputBlockSize = blockSize;
c@20 411 m_inputStepSize = stepSize;
c@20 412
c@24 413 //m_spectrogram = Spectrogram(m_inputBlockSize/2 + 1);
c@21 414 if (!handleParameterValues()) return false;
c@19 415 //cout << m_cyclicTempogramOctaveDivider << endl;
c@4 416
c@0 417 return true;
c@0 418 }
c@0 419
c@0 420 void
c@14 421 TempogramPlugin::reset()
c@0 422 {
c@0 423 // Clear buffers, reset stored values, etc
c@19 424 m_spectrogram.clear();
c@21 425 handleParameterValues();
c@0 426 }
c@0 427
c@14 428 TempogramPlugin::FeatureSet
c@14 429 TempogramPlugin::process(const float *const *inputBuffers, Vamp::RealTime timestamp)
c@0 430 {
c@23 431 int n = m_inputBlockSize/2 + 1;
c@0 432 const float *in = inputBuffers[0];
c@3 433
c@9 434 //calculate magnitude of FrequencyDomain input
c@22 435 vector<float> fftCoefficients;
c@23 436 for (int i = 0; i < n; i++){
c@0 437 float magnitude = sqrt(in[2*i] * in[2*i] + in[2*i + 1] * in[2*i + 1]);
c@29 438 magnitude = magnitude > m_noveltyCurveMinV ? magnitude : m_noveltyCurveMinV;
c@22 439 fftCoefficients.push_back(magnitude);
c@0 440 }
c@22 441 m_spectrogram.push_back(fftCoefficients);
c@24 442 //m_spectrogram.push_back(fftCoefficients);
c@21 443
c@23 444 return FeatureSet();
c@0 445 }
c@0 446
c@14 447 TempogramPlugin::FeatureSet
c@14 448 TempogramPlugin::getRemainingFeatures()
c@11 449 {
c@0 450
c@18 451 float * hannWindow = new float[m_tempogramWindowLength];
c@20 452 for (int i = 0; i < (int)m_tempogramWindowLength; i++){
c@14 453 hannWindow[i] = 0.0;
c@4 454 }
c@11 455
c@1 456 FeatureSet featureSet;
c@0 457
c@19 458 //initialise novelty curve processor
c@23 459 int numberOfBlocks = m_spectrogram.size();
c@20 460 //cerr << numberOfBlocks << endl;
c@22 461 NoveltyCurveProcessor nc(m_inputSampleRate, m_inputBlockSize, m_noveltyCurveCompressionConstant);
c@21 462 vector<float> noveltyCurve = nc.spectrogramToNoveltyCurve(m_spectrogram); //calculate novelty curvefrom magnitude data
c@4 463
c@9 464 //push novelty curve data to featureset 1 and set timestamps
c@23 465 for (int i = 0; i < numberOfBlocks; i++){
c@19 466 Feature noveltyCurveFeature;
c@19 467 noveltyCurveFeature.values.push_back(noveltyCurve[i]);
c@19 468 noveltyCurveFeature.hasTimestamp = false;
c@25 469 featureSet[3].push_back(noveltyCurveFeature);
c@21 470 assert(!isnan(noveltyCurveFeature.values.back()));
c@4 471 }
c@4 472
c@9 473 //window function for spectrogram
c@18 474 WindowFunction::hanning(hannWindow, m_tempogramWindowLength);
c@9 475
c@9 476 //initialise spectrogram processor
c@18 477 SpectrogramProcessor spectrogramProcessor(m_tempogramWindowLength, m_tempogramFftLength, m_tempogramHopSize);
c@9 478 //compute spectrogram from novelty curve data (i.e., tempogram)
c@25 479 Tempogram tempogramDFT = spectrogramProcessor.process(&noveltyCurve[0], numberOfBlocks, hannWindow);
c@18 480 delete []hannWindow;
c@18 481 hannWindow = 0;
c@0 482
c@25 483 int tempogramLength = tempogramDFT.size();
c@7 484
c@9 485 //push tempogram data to featureset 0 and set timestamps.
c@7 486 for (int block = 0; block < tempogramLength; block++){
c@25 487 Feature tempogramDFTFeature;
c@28 488
c@28 489 assert(tempogramDFT[block].size() == (m_tempogramFftLength/2 + 1));
c@28 490 for(int k = m_tempogramMinBin; k <= (int)m_tempogramMaxBin; k++){
c@28 491 tempogramDFTFeature.values.push_back(tempogramDFT[block][k]);
c@28 492 }
c@28 493 tempogramDFTFeature.hasTimestamp = false;
c@28 494 featureSet[1].push_back(tempogramDFTFeature);
c@28 495 }
c@28 496
c@28 497 AutocorrelationProcessor autocorrelationProcessor(m_tempogramWindowLength, m_tempogramHopSize);
c@28 498 Tempogram tempogramACT = autocorrelationProcessor.process(&noveltyCurve[0], numberOfBlocks);
c@28 499
c@28 500 for (int block = 0; block < tempogramLength; block++){
c@25 501 Feature tempogramACTFeature;
c@0 502
c@28 503 for(int k = m_tempogramMaxLag; k >= (int)m_tempogramMinLag; k--){
c@25 504 tempogramACTFeature.values.push_back(tempogramACT[block][k]);
c@0 505 }
c@25 506 tempogramACTFeature.hasTimestamp = false;
c@25 507 featureSet[2].push_back(tempogramACTFeature);
c@0 508 }
c@0 509
c@18 510 //Calculate cyclic tempogram
c@22 511 vector< vector<unsigned int> > logBins = calculateTempogramNearestNeighbourLogBins();
c@18 512
c@22 513 //assert((int)logBins.size() == m_cyclicTempogramOctaveDivider*m_cyclicTempogramNumberOfOctaves);
c@18 514 for (int block = 0; block < tempogramLength; block++){
c@19 515 Feature cyclicTempogramFeature;
c@18 516
c@23 517 for (int i = 0; i < m_cyclicTempogramOctaveDivider; i++){
c@18 518 float sum = 0;
c@21 519
c@23 520 for (int j = 0; j < m_cyclicTempogramNumberOfOctaves; j++){
Chris@34 521
Chris@34 522 if (block >= tempogramDFT.size()) {
Chris@34 523 cerr << "ERROR: at block = " << block << ", i = " << i << ", j = " << j << ": block " << block << " >= tempogramDFT.size() " << tempogramDFT.size() << endl;
Chris@34 524 } else if (j > logBins.size()) {
Chris@34 525 cerr << "ERROR: at block = " << block << ", i = " << i << ", j = " << j << ": j " << j << " >= logBins.size() " << logBins.size() << endl;
Chris@34 526 } else if (i > logBins[j].size()) {
Chris@34 527 cerr << "ERROR: at block = " << block << ", i = " << i << ", j = " << j << ": i " << i << " >= logBins[j].size() " << logBins[j].size() << endl;
Chris@34 528 } else if (logBins[j][i] >= tempogramDFT[block].size()) {
Chris@34 529 cerr << "ERROR: at block = " << block << ", i = " << i << ", j = " << j << ": logBins[j][i] " << logBins[j][i] << " >= tempogramDFT[block].size() " << tempogramDFT[block].size() << endl;
Chris@34 530 } else {
Chris@34 531 sum += tempogramDFT[block][logBins[j][i]];
Chris@34 532 }
c@18 533 }
c@19 534 cyclicTempogramFeature.values.push_back(sum/m_cyclicTempogramNumberOfOctaves);
c@21 535 assert(!isnan(cyclicTempogramFeature.values.back()));
c@18 536 }
c@18 537
c@19 538 cyclicTempogramFeature.hasTimestamp = false;
c@21 539 featureSet[0].push_back(cyclicTempogramFeature);
c@18 540 }
c@0 541
c@0 542 return featureSet;
c@0 543 }
c@22 544
c@22 545 vector< vector<unsigned int> > TempogramPlugin::calculateTempogramNearestNeighbourLogBins() const
c@22 546 {
c@22 547 vector< vector<unsigned int> > logBins;
c@22 548
c@22 549 for (int octave = 0; octave < (int)m_cyclicTempogramNumberOfOctaves; octave++){
c@22 550 vector<unsigned int> octaveBins;
c@22 551
c@22 552 for (int bin = 0; bin < (int)m_cyclicTempogramOctaveDivider; bin++){
c@22 553 float bpm = m_cyclicTempogramMinBPM*pow(2.0f, octave+(float)bin/m_cyclicTempogramOctaveDivider);
c@22 554 octaveBins.push_back(bpmToBin(bpm));
c@23 555 //cout << octaveBins.back() << endl;
c@22 556 }
c@22 557 logBins.push_back(octaveBins);
c@22 558 }
c@22 559
c@22 560 //cerr << logBins.size() << endl;
c@22 561
c@22 562 return logBins;
c@22 563 }
c@22 564
c@22 565 unsigned int TempogramPlugin::bpmToBin(const float &bpm) const
c@22 566 {
c@22 567 float w = (float)bpm/60;
c@22 568 float sampleRate = m_inputSampleRate/m_inputStepSize;
c@22 569 int bin = floor((float)m_tempogramFftLength*w/sampleRate + 0.5);
c@22 570
c@22 571 if(bin < 0) bin = 0;
c@22 572 else if(bin > m_tempogramFftLength/2.0f) bin = m_tempogramFftLength;
c@22 573
c@22 574 return bin;
c@22 575 }
c@22 576
c@22 577 float TempogramPlugin::binToBPM(const int &bin) const
c@22 578 {
c@22 579 float sampleRate = m_inputSampleRate/m_inputStepSize;
c@22 580
c@22 581 return (bin*sampleRate/m_tempogramFftLength)*60;
c@22 582 }
c@22 583
c@22 584 bool TempogramPlugin::handleParameterValues(){
c@22 585
c@30 586 if (m_tempogramLog2HopSize <= 0) return false;
c@22 587 if (m_tempogramLog2FftLength <= 0) return false;
c@22 588
c@22 589 if (m_tempogramMinBPM >= m_tempogramMaxBPM){
c@22 590 m_tempogramMinBPM = 30;
c@22 591 m_tempogramMaxBPM = 480;
c@22 592 }
c@22 593
c@29 594 m_noveltyCurveMinV = pow(10,(float)m_noveltyCurveMinDB/20);
c@29 595
c@29 596 m_tempogramWindowLength = pow(2,m_tempogramLog2WindowLength);
c@29 597 m_tempogramHopSize = pow(2,m_tempogramLog2HopSize);
c@29 598 m_tempogramFftLength = pow(2,m_tempogramLog2FftLength);
c@29 599
c@30 600 if (m_tempogramFftLength < m_tempogramWindowLength){
c@30 601 m_tempogramFftLength = m_tempogramWindowLength;
c@30 602 }
c@30 603
c@22 604 float tempogramInputSampleRate = (float)m_inputSampleRate/m_inputStepSize;
c@28 605 m_tempogramMinBin = (max((int)floor(((m_tempogramMinBPM/60)/tempogramInputSampleRate)*m_tempogramFftLength), 0));
c@28 606 m_tempogramMaxBin = (min((int)ceil(((m_tempogramMaxBPM/60)/tempogramInputSampleRate)*m_tempogramFftLength), (int)(m_tempogramFftLength/2)));
Chris@32 607
Chris@32 608 if (m_tempogramMaxBin < m_tempogramMinBin) {
Chris@32 609 cerr << "At audio sample rate " << m_inputSampleRate
Chris@32 610 << ", tempogram sample rate " << tempogramInputSampleRate
Chris@32 611 << " with bpm range " << m_tempogramMinBPM << " -> "
Chris@32 612 << m_tempogramMaxBPM << ", min bin = " << m_tempogramMinBin
Chris@32 613 << " > max bin " << m_tempogramMaxBin
Chris@32 614 << ": can't proceed, failing initialise" << endl;
Chris@32 615 return false;
Chris@32 616 }
c@28 617
c@28 618 m_tempogramMinLag = max((int)ceil((60/(m_inputStepSize * m_tempogramMaxBPM))*m_inputSampleRate), 0);
c@28 619 m_tempogramMaxLag = min((int)floor((60/(m_inputStepSize * m_tempogramMinBPM))*m_inputSampleRate), (int)m_tempogramWindowLength);
Chris@32 620
Chris@32 621 if (m_tempogramMaxLag < m_tempogramMinLag) {
Chris@32 622 cerr << "At audio sample rate " << m_inputSampleRate
Chris@32 623 << ", tempogram sample rate " << tempogramInputSampleRate
Chris@32 624 << " with bpm range " << m_tempogramMinBPM << " -> "
Chris@32 625 << m_tempogramMaxBPM << ", min bin = " << m_tempogramMinLag
Chris@32 626 << " > max bin " << m_tempogramMaxLag
Chris@32 627 << ": can't proceed, failing initialise" << endl;
Chris@32 628 return false;
Chris@32 629 }
c@22 630
c@25 631 if (m_tempogramMinBPM > m_cyclicTempogramMinBPM) m_cyclicTempogramMinBPM = m_tempogramMinBPM; //m_cyclicTempogram can't be less than default = 30
c@22 632 float cyclicTempogramMaxBPM = 480;
c@22 633 if (m_tempogramMaxBPM < cyclicTempogramMaxBPM) cyclicTempogramMaxBPM = m_tempogramMaxBPM;
c@22 634
c@22 635 m_cyclicTempogramNumberOfOctaves = floor(log2(cyclicTempogramMaxBPM/m_cyclicTempogramMinBPM));
c@22 636
c@22 637 return true;
c@22 638 }
c@22 639
c@22 640 string TempogramPlugin::floatToString(float value) const
c@22 641 {
c@22 642 ostringstream ss;
c@22 643
c@22 644 if(!(ss << value)) throw runtime_error("TempogramPlugin::floatToString(): invalid conversion from float to string");
c@22 645 return ss.str();
c@22 646 }