annotate TempogramPlugin.cpp @ 22:99380ba63be6

* Changed input of NoveltyCurve::spectrogramToNoveltyCurve() from transposed spe ctrogram to spectrogram * Collect spectrogram from process(), not transposed spectrogram * allowed OctaveDivider parameter to be any value in range, despite number of binumber of values in the range
author Carl Bussey <c.bussey@se10.qmul.ac.uk>
date Tue, 19 Aug 2014 16:52:19 +0100
parents 12b952286959
children 7d36c742a183
rev   line source
c@0 1
c@0 2 // This is a skeleton file for use in creating your own plugin
c@0 3 // libraries. Replace MyPlugin and myPlugin throughout with the name
c@0 4 // of your first plugin class, and fill in the gaps as appropriate.
c@0 5
c@0 6
c@14 7 #include "TempogramPlugin.h"
c@9 8 #include <sstream>
c@9 9 #include <stdexcept>
c@4 10
c@0 11 using Vamp::FFT;
c@7 12 using Vamp::RealTime;
c@0 13 using namespace std;
c@0 14
c@14 15 TempogramPlugin::TempogramPlugin(float inputSampleRate) :
c@0 16 Plugin(inputSampleRate),
c@18 17 m_inputBlockSize(0), //host parameter
c@18 18 m_inputStepSize(0), //host parameter
c@19 19 m_noveltyCurveMinDB(pow(10,(float)-74/20)), //set in initialise()
c@18 20 m_noveltyCurveCompressionConstant(1000), //parameter
c@18 21 m_tempogramLog2WindowLength(10), //parameter
c@18 22 m_tempogramWindowLength(pow((float)2,m_tempogramLog2WindowLength)),
c@18 23 m_tempogramLog2FftLength(m_tempogramLog2WindowLength), //parameter
c@18 24 m_tempogramFftLength(m_tempogramWindowLength),
c@18 25 m_tempogramLog2HopSize(6), //parameter
c@18 26 m_tempogramHopSize(pow((float)2,m_tempogramLog2HopSize)),
c@18 27 m_tempogramMinBPM(30), //parameter
c@18 28 m_tempogramMaxBPM(480), //parameter
c@18 29 m_tempogramMinBin(0), //set in initialise()
c@18 30 m_tempogramMaxBin(0), //set in initialise()
c@18 31 m_cyclicTempogramMinBPM(30), //reset in initialise()
c@18 32 m_cyclicTempogramNumberOfOctaves(0), //set in initialise()
c@18 33 m_cyclicTempogramOctaveDivider(30) //parameter
c@0 34
c@0 35 // Also be sure to set your plugin parameters (presumably stored
c@0 36 // in member variables) to their default values here -- the host
c@0 37 // will not do that for you
c@0 38 {
c@0 39 }
c@0 40
c@14 41 TempogramPlugin::~TempogramPlugin()
c@0 42 {
c@0 43 //delete stuff
c@19 44
c@0 45 }
c@0 46
c@0 47 string
c@14 48 TempogramPlugin::getIdentifier() const
c@0 49 {
c@0 50 return "tempogram";
c@0 51 }
c@0 52
c@0 53 string
c@14 54 TempogramPlugin::getName() const
c@0 55 {
c@0 56 return "Tempogram";
c@0 57 }
c@0 58
c@0 59 string
c@14 60 TempogramPlugin::getDescription() const
c@0 61 {
c@0 62 // Return something helpful here!
c@0 63 return "Cyclic Tempogram as described by Peter Grosche and Meinard Muller";
c@0 64 }
c@0 65
c@0 66 string
c@14 67 TempogramPlugin::getMaker() const
c@0 68 {
c@0 69 //Your name here
c@0 70 return "Carl Bussey";
c@0 71 }
c@0 72
c@0 73 int
c@14 74 TempogramPlugin::getPluginVersion() const
c@0 75 {
c@0 76 // Increment this each time you release a version that behaves
c@0 77 // differently from the previous one
c@0 78 return 1;
c@0 79 }
c@0 80
c@0 81 string
c@14 82 TempogramPlugin::getCopyright() const
c@0 83 {
c@0 84 // This function is not ideally named. It does not necessarily
c@0 85 // need to say who made the plugin -- getMaker does that -- but it
c@0 86 // should indicate the terms under which it is distributed. For
c@0 87 // example, "Copyright (year). All Rights Reserved", or "GPL"
c@0 88 return "";
c@0 89 }
c@0 90
c@14 91 TempogramPlugin::InputDomain
c@14 92 TempogramPlugin::getInputDomain() const
c@0 93 {
c@0 94 return FrequencyDomain;
c@0 95 }
c@0 96
c@0 97 size_t
c@14 98 TempogramPlugin::getPreferredBlockSize() const
c@0 99 {
c@9 100 return 2048; // 0 means "I can handle any block size"
c@0 101 }
c@0 102
c@0 103 size_t
c@14 104 TempogramPlugin::getPreferredStepSize() const
c@0 105 {
c@9 106 return 1024; // 0 means "anything sensible"; in practice this
c@0 107 // means the same as the block size for TimeDomain
c@0 108 // plugins, or half of it for FrequencyDomain plugins
c@0 109 }
c@0 110
c@0 111 size_t
c@14 112 TempogramPlugin::getMinChannelCount() const
c@0 113 {
c@0 114 return 1;
c@0 115 }
c@0 116
c@0 117 size_t
c@14 118 TempogramPlugin::getMaxChannelCount() const
c@0 119 {
c@0 120 return 1;
c@0 121 }
c@0 122
c@14 123 TempogramPlugin::ParameterList
c@14 124 TempogramPlugin::getParameterDescriptors() const
c@0 125 {
c@0 126 ParameterList list;
c@0 127
c@0 128 // If the plugin has no adjustable parameters, return an empty
c@0 129 // list here (and there's no need to provide implementations of
c@0 130 // getParameter and setParameter in that case either).
c@0 131
c@0 132 // Note that it is your responsibility to make sure the parameters
c@0 133 // start off having their default values (e.g. in the constructor
c@0 134 // above). The host needs to know the default value so it can do
c@0 135 // things like provide a "reset to default" function, but it will
c@0 136 // not explicitly set your parameters to their defaults for you if
c@0 137 // they have not changed in the mean time.
c@0 138
c@14 139 ParameterDescriptor d1;
c@14 140 d1.identifier = "C";
c@15 141 d1.name = "Novelty Curve Spectrogram Compression Constant";
c@14 142 d1.description = "Spectrogram compression constant, C, used when retrieving the novelty curve from the audio.";
c@14 143 d1.unit = "";
c@14 144 d1.minValue = 2;
c@14 145 d1.maxValue = 10000;
c@14 146 d1.defaultValue = 1000;
c@14 147 d1.isQuantized = false;
c@14 148 list.push_back(d1);
c@9 149
c@14 150 ParameterDescriptor d2;
c@14 151 d2.identifier = "log2TN";
c@14 152 d2.name = "Tempogram Window Length";
c@14 153 d2.description = "FFT window length when analysing the novelty curve and extracting the tempogram time-frequency function.";
c@14 154 d2.unit = "";
c@14 155 d2.minValue = 7;
c@14 156 d2.maxValue = 12;
c@14 157 d2.defaultValue = 10;
c@14 158 d2.isQuantized = true;
c@14 159 d2.quantizeStep = 1;
c@14 160 for (int i = d2.minValue; i <= d2.maxValue; i++){
c@14 161 d2.valueNames.push_back(floatToString(pow((float)2,(float)i)));
c@13 162 }
c@14 163 list.push_back(d2);
c@0 164
c@14 165 ParameterDescriptor d3;
c@14 166 d3.identifier = "log2HopSize";
c@14 167 d3.name = "Tempogram Hopsize";
c@14 168 d3.description = "FFT hopsize when analysing the novelty curve and extracting the tempogram time-frequency function.";
c@14 169 d3.unit = "";
c@14 170 d3.minValue = 6;
c@14 171 d3.maxValue = 12;
c@14 172 d3.defaultValue = 6;
c@14 173 d3.isQuantized = true;
c@14 174 d3.quantizeStep = 1;
c@14 175 for (int i = d3.minValue; i <= d3.maxValue; i++){
c@14 176 d3.valueNames.push_back(floatToString(pow((float)2,(float)i)));
c@14 177 }
c@14 178 list.push_back(d3);
c@9 179
c@14 180 ParameterDescriptor d4;
c@14 181 d4.identifier = "log2FftLength";
c@14 182 d4.name = "Tempogram FFT Length";
c@14 183 d4.description = "FFT length when analysing the novelty curve and extracting the tempogram time-frequency function. This parameter determines the amount of zero padding.";
c@14 184 d4.unit = "";
c@14 185 d4.minValue = 6;
c@14 186 d4.maxValue = 12;
c@14 187 d4.defaultValue = d2.defaultValue;
c@14 188 d4.isQuantized = true;
c@14 189 d4.quantizeStep = 1;
c@14 190 for (int i = d4.minValue; i <= d4.maxValue; i++){
c@14 191 d4.valueNames.push_back(floatToString(pow((float)2,(float)i)));
c@14 192 }
c@14 193 list.push_back(d4);
c@14 194
c@14 195 ParameterDescriptor d5;
c@14 196 d5.identifier = "minBPM";
c@18 197 d5.name = "(Cyclic) Tempogram Minimum BPM";
c@14 198 d5.description = "The minimum BPM of the tempogram output bins.";
c@14 199 d5.unit = "";
c@14 200 d5.minValue = 0;
c@14 201 d5.maxValue = 2000;
c@14 202 d5.defaultValue = 30;
c@14 203 d5.isQuantized = true;
c@14 204 d5.quantizeStep = 5;
c@14 205 list.push_back(d5);
c@14 206
c@14 207 ParameterDescriptor d6;
c@14 208 d6.identifier = "maxBPM";
c@18 209 d6.name = "(Cyclic) Tempogram Maximum BPM";
c@18 210 d6.description = "The maximum BPM of the tempogram output bins.";
c@14 211 d6.unit = "";
c@14 212 d6.minValue = 30;
c@14 213 d6.maxValue = 2000;
c@14 214 d6.defaultValue = 480;
c@14 215 d6.isQuantized = true;
c@14 216 d6.quantizeStep = 5;
c@14 217 list.push_back(d6);
c@18 218
c@18 219 ParameterDescriptor d7;
c@18 220 d7.identifier = "octDiv";
c@18 221 d7.name = "Cyclic Tempogram Octave Divider";
c@18 222 d7.description = "The number bins within each octave.";
c@18 223 d7.unit = "";
c@18 224 d7.minValue = 5;
c@18 225 d7.maxValue = 60;
c@18 226 d7.defaultValue = 30;
c@18 227 d7.isQuantized = true;
c@18 228 d7.quantizeStep = 1;
c@18 229 list.push_back(d7);
c@0 230
c@0 231 return list;
c@0 232 }
c@0 233
c@0 234 float
c@14 235 TempogramPlugin::getParameter(string identifier) const
c@0 236 {
c@0 237 if (identifier == "C") {
c@18 238 return m_noveltyCurveCompressionConstant; // return the ACTUAL current value of your parameter here!
c@0 239 }
c@14 240 else if (identifier == "log2TN"){
c@18 241 return m_tempogramLog2WindowLength;
c@9 242 }
c@14 243 else if (identifier == "log2HopSize"){
c@18 244 return m_tempogramLog2HopSize;
c@14 245 }
c@14 246 else if (identifier == "log2FftLength"){
c@18 247 return m_tempogramLog2FftLength;
c@14 248 }
c@14 249 else if (identifier == "minBPM") {
c@18 250 return m_tempogramMinBPM;
c@9 251 }
c@14 252 else if (identifier == "maxBPM"){
c@18 253 return m_tempogramMaxBPM;
c@18 254 }
c@18 255 else if (identifier == "octDiv"){
c@18 256 return m_cyclicTempogramOctaveDivider;
c@0 257 }
c@0 258
c@0 259 return 0;
c@0 260 }
c@0 261
c@0 262 void
c@14 263 TempogramPlugin::setParameter(string identifier, float value)
c@0 264 {
c@9 265
c@0 266 if (identifier == "C") {
c@18 267 m_noveltyCurveCompressionConstant = value; // set the actual value of your parameter
c@0 268 }
c@14 269 else if (identifier == "log2TN") {
c@18 270 m_tempogramWindowLength = pow(2,value);
c@18 271 m_tempogramLog2WindowLength = value;
c@0 272 }
c@14 273 else if (identifier == "log2HopSize"){
c@18 274 m_tempogramHopSize = pow(2,value);
c@18 275 m_tempogramLog2HopSize = value;
c@14 276 }
c@18 277 else if (identifier == "log2FftLength"){
c@18 278 m_tempogramFftLength = pow(2,value);
c@18 279 m_tempogramLog2FftLength = value;
c@14 280 }
c@14 281 else if (identifier == "minBPM") {
c@18 282 m_tempogramMinBPM = value;
c@9 283 }
c@14 284 else if (identifier == "maxBPM"){
c@18 285 m_tempogramMaxBPM = value;
c@18 286 }
c@18 287 else if (identifier == "octDiv"){
c@18 288 m_cyclicTempogramOctaveDivider = value;
c@9 289 }
c@9 290
c@9 291 }
c@9 292
c@14 293 TempogramPlugin::ProgramList
c@14 294 TempogramPlugin::getPrograms() const
c@0 295 {
c@0 296 ProgramList list;
c@0 297
c@0 298 // If you have no programs, return an empty list (or simply don't
c@0 299 // implement this function or getCurrentProgram/selectProgram)
c@0 300
c@0 301 return list;
c@0 302 }
c@0 303
c@0 304 string
c@14 305 TempogramPlugin::getCurrentProgram() const
c@0 306 {
c@0 307 return ""; // no programs
c@0 308 }
c@0 309
c@0 310 void
c@14 311 TempogramPlugin::selectProgram(string name)
c@0 312 {
c@0 313 }
c@0 314
c@14 315 TempogramPlugin::OutputList
c@14 316 TempogramPlugin::getOutputDescriptors() const
c@0 317 {
c@0 318 OutputList list;
c@0 319
c@0 320 // See OutputDescriptor documentation for the possibilities here.
c@0 321 // Every plugin must have at least one output.
c@1 322
c@7 323 float d_sampleRate;
c@18 324 float tempogramInputSampleRate = (float)m_inputSampleRate/m_inputStepSize;
c@7 325
c@21 326 OutputDescriptor d3;
c@21 327 d3.identifier = "cyclicTempogram";
c@21 328 d3.name = "Cyclic Tempogram";
c@21 329 d3.description = "Cyclic Tempogram";
c@21 330 d3.unit = "";
c@21 331 d3.hasFixedBinCount = true;
c@21 332 d3.binCount = m_cyclicTempogramOctaveDivider > 0 && !isnan(m_cyclicTempogramOctaveDivider) ? m_cyclicTempogramOctaveDivider : 0;
c@21 333 d3.hasKnownExtents = false;
c@21 334 d3.isQuantized = false;
c@21 335 d3.sampleType = OutputDescriptor::FixedSampleRate;
c@21 336 d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize;
c@21 337 d3.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0;
c@21 338 d3.hasDuration = false;
c@21 339 list.push_back(d3);
c@21 340
c@21 341 OutputDescriptor d1;
c@18 342 d1.identifier = "tempogram";
c@18 343 d1.name = "Tempogram";
c@18 344 d1.description = "Tempogram";
c@18 345 d1.unit = "BPM";
c@18 346 d1.hasFixedBinCount = true;
c@18 347 d1.binCount = m_tempogramMaxBin - m_tempogramMinBin + 1;
c@18 348 d1.hasKnownExtents = false;
c@18 349 d1.isQuantized = false;
c@18 350 d1.sampleType = OutputDescriptor::FixedSampleRate;
c@18 351 d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize;
c@18 352 d1.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0.0;
c@18 353 for(int i = m_tempogramMinBin; i <= (int)m_tempogramMaxBin; i++){
c@18 354 float w = ((float)i/m_tempogramFftLength)*(tempogramInputSampleRate);
c@18 355 d1.binNames.push_back(floatToString(w*60));
c@9 356 }
c@18 357 d1.hasDuration = false;
c@18 358 list.push_back(d1);
c@7 359
c@18 360 OutputDescriptor d2;
c@18 361 d2.identifier = "nc";
c@18 362 d2.name = "Novelty Curve";
c@18 363 d2.description = "Novelty Curve";
c@18 364 d2.unit = "";
c@18 365 d2.hasFixedBinCount = true;
c@18 366 d2.binCount = 1;
c@18 367 d2.hasKnownExtents = false;
c@18 368 d2.isQuantized = false;
c@18 369 d2.sampleType = OutputDescriptor::FixedSampleRate;
c@9 370 d_sampleRate = tempogramInputSampleRate;
c@18 371 d2.sampleRate = d_sampleRate > 0 && !isnan(d_sampleRate) ? d_sampleRate : 0;
c@18 372 d2.hasDuration = false;
c@18 373 list.push_back(d2);
c@18 374
c@0 375 return list;
c@0 376 }
c@0 377
c@20 378 bool
c@20 379 TempogramPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize)
c@20 380 {
c@20 381 if (channels < getMinChannelCount() ||
c@20 382 channels > getMaxChannelCount()) return false;
c@20 383
c@20 384 // Real initialisation work goes here!
c@20 385 m_inputBlockSize = blockSize;
c@20 386 m_inputStepSize = stepSize;
c@20 387
c@21 388 if (!handleParameterValues()) return false;
c@19 389 //cout << m_cyclicTempogramOctaveDivider << endl;
c@4 390
c@0 391 return true;
c@0 392 }
c@0 393
c@0 394 void
c@14 395 TempogramPlugin::reset()
c@0 396 {
c@0 397 // Clear buffers, reset stored values, etc
c@19 398 m_spectrogram.clear();
c@21 399 handleParameterValues();
c@0 400 }
c@0 401
c@14 402 TempogramPlugin::FeatureSet
c@14 403 TempogramPlugin::process(const float *const *inputBuffers, Vamp::RealTime timestamp)
c@0 404 {
c@21 405 //cerr << "Here" << endl;
c@21 406
c@18 407 size_t n = m_inputBlockSize/2 + 1;
c@0 408
c@0 409 FeatureSet featureSet;
c@0 410 Feature feature;
c@0 411
c@0 412 const float *in = inputBuffers[0];
c@3 413
c@9 414 //calculate magnitude of FrequencyDomain input
c@22 415 vector<float> fftCoefficients;
c@20 416 for (int i = 0; i < (int)n; i++){
c@0 417 float magnitude = sqrt(in[2*i] * in[2*i] + in[2*i + 1] * in[2*i + 1]);
c@18 418 magnitude = magnitude > m_noveltyCurveMinDB ? magnitude : m_noveltyCurveMinDB;
c@22 419 fftCoefficients.push_back(magnitude);
c@0 420 }
c@22 421 m_spectrogram.push_back(fftCoefficients);
c@21 422
c@2 423 return featureSet;
c@0 424 }
c@0 425
c@14 426 TempogramPlugin::FeatureSet
c@14 427 TempogramPlugin::getRemainingFeatures()
c@11 428 {
c@0 429
c@18 430 float * hannWindow = new float[m_tempogramWindowLength];
c@20 431 for (int i = 0; i < (int)m_tempogramWindowLength; i++){
c@14 432 hannWindow[i] = 0.0;
c@4 433 }
c@11 434
c@1 435 FeatureSet featureSet;
c@0 436
c@19 437 //initialise novelty curve processor
c@22 438 size_t numberOfBlocks = m_spectrogram.size();
c@20 439 //cerr << numberOfBlocks << endl;
c@22 440 NoveltyCurveProcessor nc(m_inputSampleRate, m_inputBlockSize, m_noveltyCurveCompressionConstant);
c@21 441 vector<float> noveltyCurve = nc.spectrogramToNoveltyCurve(m_spectrogram); //calculate novelty curvefrom magnitude data
c@20 442 //if(noveltyCurve.size() > 50) for (int i = 0; i < 50; i++) cerr << noveltyCurve[i] << endl;
c@4 443
c@9 444 //push novelty curve data to featureset 1 and set timestamps
c@20 445 for (int i = 0; i < (int)numberOfBlocks; i++){
c@19 446 Feature noveltyCurveFeature;
c@19 447 noveltyCurveFeature.values.push_back(noveltyCurve[i]);
c@19 448 noveltyCurveFeature.hasTimestamp = false;
c@21 449 featureSet[2].push_back(noveltyCurveFeature);
c@21 450 assert(!isnan(noveltyCurveFeature.values.back()));
c@4 451 }
c@4 452
c@9 453 //window function for spectrogram
c@18 454 WindowFunction::hanning(hannWindow, m_tempogramWindowLength);
c@9 455
c@9 456 //initialise spectrogram processor
c@18 457 SpectrogramProcessor spectrogramProcessor(m_tempogramWindowLength, m_tempogramFftLength, m_tempogramHopSize);
c@9 458 //compute spectrogram from novelty curve data (i.e., tempogram)
c@19 459 Tempogram tempogram = spectrogramProcessor.process(&noveltyCurve[0], numberOfBlocks, hannWindow);
c@18 460 delete []hannWindow;
c@18 461 hannWindow = 0;
c@0 462
c@14 463 int tempogramLength = tempogram.size();
c@7 464
c@9 465 //push tempogram data to featureset 0 and set timestamps.
c@7 466 for (int block = 0; block < tempogramLength; block++){
c@19 467 Feature tempogramFeature;
c@0 468
c@18 469 assert(tempogram[block].size() == (m_tempogramFftLength/2 + 1));
c@18 470 for(int k = m_tempogramMinBin; k < (int)m_tempogramMaxBin; k++){
c@19 471 tempogramFeature.values.push_back(tempogram[block][k]);
c@21 472 assert(!isnan(tempogramFeature.values.back()));
c@0 473 }
c@19 474 tempogramFeature.hasTimestamp = false;
c@21 475 featureSet[1].push_back(tempogramFeature);
c@0 476 }
c@0 477
c@18 478 //Calculate cyclic tempogram
c@22 479 vector< vector<unsigned int> > logBins = calculateTempogramNearestNeighbourLogBins();
c@18 480
c@22 481 //assert((int)logBins.size() == m_cyclicTempogramOctaveDivider*m_cyclicTempogramNumberOfOctaves);
c@18 482 for (int block = 0; block < tempogramLength; block++){
c@19 483 Feature cyclicTempogramFeature;
c@18 484
c@20 485 for (int i = 0; i < (int)m_cyclicTempogramOctaveDivider; i++){
c@18 486 float sum = 0;
c@21 487
c@20 488 for (int j = 0; j < (int)m_cyclicTempogramNumberOfOctaves; j++){
c@22 489 sum += tempogram[block][logBins[j][i]];
c@18 490 }
c@19 491 cyclicTempogramFeature.values.push_back(sum/m_cyclicTempogramNumberOfOctaves);
c@21 492 assert(!isnan(cyclicTempogramFeature.values.back()));
c@18 493 }
c@18 494
c@19 495 cyclicTempogramFeature.hasTimestamp = false;
c@21 496 featureSet[0].push_back(cyclicTempogramFeature);
c@18 497 }
c@0 498
c@0 499 return featureSet;
c@0 500 }
c@22 501
c@22 502 vector< vector<unsigned int> > TempogramPlugin::calculateTempogramNearestNeighbourLogBins() const
c@22 503 {
c@22 504 vector< vector<unsigned int> > logBins;
c@22 505
c@22 506 for (int octave = 0; octave < (int)m_cyclicTempogramNumberOfOctaves; octave++){
c@22 507 vector<unsigned int> octaveBins;
c@22 508
c@22 509 for (int bin = 0; bin < (int)m_cyclicTempogramOctaveDivider; bin++){
c@22 510 float bpm = m_cyclicTempogramMinBPM*pow(2.0f, octave+(float)bin/m_cyclicTempogramOctaveDivider);
c@22 511
c@22 512 octaveBins.push_back(bpmToBin(bpm));
c@22 513 }
c@22 514 logBins.push_back(octaveBins);
c@22 515 }
c@22 516
c@22 517 //cerr << logBins.size() << endl;
c@22 518
c@22 519 return logBins;
c@22 520 }
c@22 521
c@22 522 unsigned int TempogramPlugin::bpmToBin(const float &bpm) const
c@22 523 {
c@22 524 float w = (float)bpm/60;
c@22 525 float sampleRate = m_inputSampleRate/m_inputStepSize;
c@22 526 int bin = floor((float)m_tempogramFftLength*w/sampleRate + 0.5);
c@22 527
c@22 528 if(bin < 0) bin = 0;
c@22 529 else if(bin > m_tempogramFftLength/2.0f) bin = m_tempogramFftLength;
c@22 530
c@22 531 return bin;
c@22 532 }
c@22 533
c@22 534 float TempogramPlugin::binToBPM(const int &bin) const
c@22 535 {
c@22 536 float sampleRate = m_inputSampleRate/m_inputStepSize;
c@22 537
c@22 538 return (bin*sampleRate/m_tempogramFftLength)*60;
c@22 539 }
c@22 540
c@22 541 bool TempogramPlugin::handleParameterValues(){
c@22 542
c@22 543 if (m_tempogramHopSize <= 0) return false;
c@22 544 if (m_tempogramLog2FftLength <= 0) return false;
c@22 545
c@22 546 if (m_tempogramFftLength < m_tempogramWindowLength){
c@22 547 m_tempogramFftLength = m_tempogramWindowLength;
c@22 548 }
c@22 549 if (m_tempogramMinBPM >= m_tempogramMaxBPM){
c@22 550 m_tempogramMinBPM = 30;
c@22 551 m_tempogramMaxBPM = 480;
c@22 552 }
c@22 553
c@22 554 float tempogramInputSampleRate = (float)m_inputSampleRate/m_inputStepSize;
c@22 555 m_tempogramMinBin = (max(floor(((m_tempogramMinBPM/60)/tempogramInputSampleRate)*m_tempogramFftLength), (float)0.0));
c@22 556 m_tempogramMaxBin = (min(ceil(((m_tempogramMaxBPM/60)/tempogramInputSampleRate)*m_tempogramFftLength), (float)m_tempogramFftLength/2));
c@22 557
c@22 558 if (m_tempogramMinBPM > m_cyclicTempogramMinBPM) m_cyclicTempogramMinBPM = m_tempogramMinBPM;
c@22 559 float cyclicTempogramMaxBPM = 480;
c@22 560 if (m_tempogramMaxBPM < cyclicTempogramMaxBPM) cyclicTempogramMaxBPM = m_tempogramMaxBPM;
c@22 561
c@22 562 m_cyclicTempogramNumberOfOctaves = floor(log2(cyclicTempogramMaxBPM/m_cyclicTempogramMinBPM));
c@22 563
c@22 564 return true;
c@22 565 }
c@22 566
c@22 567 string TempogramPlugin::floatToString(float value) const
c@22 568 {
c@22 569 ostringstream ss;
c@22 570
c@22 571 if(!(ss << value)) throw runtime_error("TempogramPlugin::floatToString(): invalid conversion from float to string");
c@22 572 return ss.str();
c@22 573 }