annotate TempogramPlugin.cpp @ 28:723af5b3303a

* Fixed tempogram via ACT bin names etc
author Carl Bussey <c.bussey@se10.qmul.ac.uk>
date Thu, 21 Aug 2014 11:07:20 +0100
parents ff6110f1144b
children 1ad47a9afc2e
rev   line source
c@0 1
c@0 2 // This is a skeleton file for use in creating your own plugin
c@0 3 // libraries. Replace MyPlugin and myPlugin throughout with the name
c@0 4 // of your first plugin class, and fill in the gaps as appropriate.
c@0 5
c@0 6
c@14 7 #include "TempogramPlugin.h"
c@25 8
c@4 9
c@0 10 using Vamp::FFT;
c@7 11 using Vamp::RealTime;
c@0 12 using namespace std;
c@0 13
c@14 14 TempogramPlugin::TempogramPlugin(float inputSampleRate) :
c@0 15 Plugin(inputSampleRate),
c@18 16 m_inputBlockSize(0), //host parameter
c@18 17 m_inputStepSize(0), //host parameter
c@19 18 m_noveltyCurveMinDB(pow(10,(float)-74/20)), //set in initialise()
c@18 19 m_noveltyCurveCompressionConstant(1000), //parameter
c@18 20 m_tempogramLog2WindowLength(10), //parameter
c@18 21 m_tempogramWindowLength(pow((float)2,m_tempogramLog2WindowLength)),
c@18 22 m_tempogramLog2FftLength(m_tempogramLog2WindowLength), //parameter
c@18 23 m_tempogramFftLength(m_tempogramWindowLength),
c@18 24 m_tempogramLog2HopSize(6), //parameter
c@18 25 m_tempogramHopSize(pow((float)2,m_tempogramLog2HopSize)),
c@18 26 m_tempogramMinBPM(30), //parameter
c@18 27 m_tempogramMaxBPM(480), //parameter
c@18 28 m_tempogramMinBin(0), //set in initialise()
c@18 29 m_tempogramMaxBin(0), //set in initialise()
c@28 30 m_tempogramMinLag(0),
c@28 31 m_tempogramMaxLag(0),
c@18 32 m_cyclicTempogramMinBPM(30), //reset in initialise()
c@18 33 m_cyclicTempogramNumberOfOctaves(0), //set in initialise()
c@18 34 m_cyclicTempogramOctaveDivider(30) //parameter
c@0 35
c@0 36 // Also be sure to set your plugin parameters (presumably stored
c@0 37 // in member variables) to their default values here -- the host
c@0 38 // will not do that for you
c@0 39 {
c@0 40 }
c@0 41
c@14 42 TempogramPlugin::~TempogramPlugin()
c@0 43 {
c@0 44 //delete stuff
c@19 45
c@0 46 }
c@0 47
c@0 48 string
c@14 49 TempogramPlugin::getIdentifier() const
c@0 50 {
c@0 51 return "tempogram";
c@0 52 }
c@0 53
c@0 54 string
c@14 55 TempogramPlugin::getName() const
c@0 56 {
c@0 57 return "Tempogram";
c@0 58 }
c@0 59
c@0 60 string
c@14 61 TempogramPlugin::getDescription() const
c@0 62 {
c@0 63 // Return something helpful here!
c@0 64 return "Cyclic Tempogram as described by Peter Grosche and Meinard Muller";
c@0 65 }
c@0 66
c@0 67 string
c@14 68 TempogramPlugin::getMaker() const
c@0 69 {
c@0 70 //Your name here
c@0 71 return "Carl Bussey";
c@0 72 }
c@0 73
c@0 74 int
c@14 75 TempogramPlugin::getPluginVersion() const
c@0 76 {
c@0 77 // Increment this each time you release a version that behaves
c@0 78 // differently from the previous one
c@0 79 return 1;
c@0 80 }
c@0 81
c@0 82 string
c@14 83 TempogramPlugin::getCopyright() const
c@0 84 {
c@0 85 // This function is not ideally named. It does not necessarily
c@0 86 // need to say who made the plugin -- getMaker does that -- but it
c@0 87 // should indicate the terms under which it is distributed. For
c@0 88 // example, "Copyright (year). All Rights Reserved", or "GPL"
c@0 89 return "";
c@0 90 }
c@0 91
c@14 92 TempogramPlugin::InputDomain
c@14 93 TempogramPlugin::getInputDomain() const
c@0 94 {
c@0 95 return FrequencyDomain;
c@0 96 }
c@0 97
c@0 98 size_t
c@14 99 TempogramPlugin::getPreferredBlockSize() const
c@0 100 {
c@9 101 return 2048; // 0 means "I can handle any block size"
c@0 102 }
c@0 103
c@0 104 size_t
c@14 105 TempogramPlugin::getPreferredStepSize() const
c@0 106 {
c@9 107 return 1024; // 0 means "anything sensible"; in practice this
c@0 108 // means the same as the block size for TimeDomain
c@0 109 // plugins, or half of it for FrequencyDomain plugins
c@0 110 }
c@0 111
c@0 112 size_t
c@14 113 TempogramPlugin::getMinChannelCount() const
c@0 114 {
c@0 115 return 1;
c@0 116 }
c@0 117
c@0 118 size_t
c@14 119 TempogramPlugin::getMaxChannelCount() const
c@0 120 {
c@0 121 return 1;
c@0 122 }
c@0 123
c@14 124 TempogramPlugin::ParameterList
c@14 125 TempogramPlugin::getParameterDescriptors() const
c@0 126 {
c@0 127 ParameterList list;
c@0 128
c@0 129 // If the plugin has no adjustable parameters, return an empty
c@0 130 // list here (and there's no need to provide implementations of
c@0 131 // getParameter and setParameter in that case either).
c@0 132
c@0 133 // Note that it is your responsibility to make sure the parameters
c@0 134 // start off having their default values (e.g. in the constructor
c@0 135 // above). The host needs to know the default value so it can do
c@0 136 // things like provide a "reset to default" function, but it will
c@0 137 // not explicitly set your parameters to their defaults for you if
c@0 138 // they have not changed in the mean time.
c@0 139
c@14 140 ParameterDescriptor d1;
c@14 141 d1.identifier = "C";
c@15 142 d1.name = "Novelty Curve Spectrogram Compression Constant";
c@14 143 d1.description = "Spectrogram compression constant, C, used when retrieving the novelty curve from the audio.";
c@14 144 d1.unit = "";
c@14 145 d1.minValue = 2;
c@14 146 d1.maxValue = 10000;
c@14 147 d1.defaultValue = 1000;
c@14 148 d1.isQuantized = false;
c@14 149 list.push_back(d1);
c@9 150
c@14 151 ParameterDescriptor d2;
c@14 152 d2.identifier = "log2TN";
c@14 153 d2.name = "Tempogram Window Length";
c@14 154 d2.description = "FFT window length when analysing the novelty curve and extracting the tempogram time-frequency function.";
c@14 155 d2.unit = "";
c@14 156 d2.minValue = 7;
c@14 157 d2.maxValue = 12;
c@14 158 d2.defaultValue = 10;
c@14 159 d2.isQuantized = true;
c@14 160 d2.quantizeStep = 1;
c@14 161 for (int i = d2.minValue; i <= d2.maxValue; i++){
c@14 162 d2.valueNames.push_back(floatToString(pow((float)2,(float)i)));
c@13 163 }
c@14 164 list.push_back(d2);
c@0 165
c@14 166 ParameterDescriptor d3;
c@14 167 d3.identifier = "log2HopSize";
c@14 168 d3.name = "Tempogram Hopsize";
c@14 169 d3.description = "FFT hopsize when analysing the novelty curve and extracting the tempogram time-frequency function.";
c@14 170 d3.unit = "";
c@14 171 d3.minValue = 6;
c@14 172 d3.maxValue = 12;
c@14 173 d3.defaultValue = 6;
c@14 174 d3.isQuantized = true;
c@14 175 d3.quantizeStep = 1;
c@14 176 for (int i = d3.minValue; i <= d3.maxValue; i++){
c@14 177 d3.valueNames.push_back(floatToString(pow((float)2,(float)i)));
c@14 178 }
c@14 179 list.push_back(d3);
c@9 180
c@14 181 ParameterDescriptor d4;
c@14 182 d4.identifier = "log2FftLength";
c@14 183 d4.name = "Tempogram FFT Length";
c@14 184 d4.description = "FFT length when analysing the novelty curve and extracting the tempogram time-frequency function. This parameter determines the amount of zero padding.";
c@14 185 d4.unit = "";
c@14 186 d4.minValue = 6;
c@14 187 d4.maxValue = 12;
c@14 188 d4.defaultValue = d2.defaultValue;
c@14 189 d4.isQuantized = true;
c@14 190 d4.quantizeStep = 1;
c@14 191 for (int i = d4.minValue; i <= d4.maxValue; i++){
c@14 192 d4.valueNames.push_back(floatToString(pow((float)2,(float)i)));
c@14 193 }
c@14 194 list.push_back(d4);
c@14 195
c@14 196 ParameterDescriptor d5;
c@14 197 d5.identifier = "minBPM";
c@18 198 d5.name = "(Cyclic) Tempogram Minimum BPM";
c@14 199 d5.description = "The minimum BPM of the tempogram output bins.";
c@14 200 d5.unit = "";
c@14 201 d5.minValue = 0;
c@14 202 d5.maxValue = 2000;
c@14 203 d5.defaultValue = 30;
c@14 204 d5.isQuantized = true;
c@14 205 d5.quantizeStep = 5;
c@14 206 list.push_back(d5);
c@14 207
c@14 208 ParameterDescriptor d6;
c@14 209 d6.identifier = "maxBPM";
c@18 210 d6.name = "(Cyclic) Tempogram Maximum BPM";
c@18 211 d6.description = "The maximum BPM of the tempogram output bins.";
c@14 212 d6.unit = "";
c@14 213 d6.minValue = 30;
c@14 214 d6.maxValue = 2000;
c@14 215 d6.defaultValue = 480;
c@14 216 d6.isQuantized = true;
c@14 217 d6.quantizeStep = 5;
c@14 218 list.push_back(d6);
c@18 219
c@18 220 ParameterDescriptor d7;
c@18 221 d7.identifier = "octDiv";
c@18 222 d7.name = "Cyclic Tempogram Octave Divider";
c@18 223 d7.description = "The number bins within each octave.";
c@18 224 d7.unit = "";
c@18 225 d7.minValue = 5;
c@18 226 d7.maxValue = 60;
c@18 227 d7.defaultValue = 30;
c@18 228 d7.isQuantized = true;
c@18 229 d7.quantizeStep = 1;
c@18 230 list.push_back(d7);
c@0 231
c@0 232 return list;
c@0 233 }
c@0 234
c@0 235 float
c@14 236 TempogramPlugin::getParameter(string identifier) const
c@0 237 {
c@0 238 if (identifier == "C") {
c@18 239 return m_noveltyCurveCompressionConstant; // return the ACTUAL current value of your parameter here!
c@0 240 }
c@14 241 else if (identifier == "log2TN"){
c@18 242 return m_tempogramLog2WindowLength;
c@9 243 }
c@14 244 else if (identifier == "log2HopSize"){
c@18 245 return m_tempogramLog2HopSize;
c@14 246 }
c@14 247 else if (identifier == "log2FftLength"){
c@18 248 return m_tempogramLog2FftLength;
c@14 249 }
c@14 250 else if (identifier == "minBPM") {
c@18 251 return m_tempogramMinBPM;
c@9 252 }
c@14 253 else if (identifier == "maxBPM"){
c@18 254 return m_tempogramMaxBPM;
c@18 255 }
c@18 256 else if (identifier == "octDiv"){
c@18 257 return m_cyclicTempogramOctaveDivider;
c@0 258 }
c@0 259
c@0 260 return 0;
c@0 261 }
c@0 262
c@0 263 void
c@14 264 TempogramPlugin::setParameter(string identifier, float value)
c@0 265 {
c@9 266
c@0 267 if (identifier == "C") {
c@18 268 m_noveltyCurveCompressionConstant = value; // set the actual value of your parameter
c@0 269 }
c@14 270 else if (identifier == "log2TN") {
c@18 271 m_tempogramWindowLength = pow(2,value);
c@18 272 m_tempogramLog2WindowLength = value;
c@0 273 }
c@14 274 else if (identifier == "log2HopSize"){
c@18 275 m_tempogramHopSize = pow(2,value);
c@18 276 m_tempogramLog2HopSize = value;
c@14 277 }
c@18 278 else if (identifier == "log2FftLength"){
c@18 279 m_tempogramFftLength = pow(2,value);
c@18 280 m_tempogramLog2FftLength = value;
c@14 281 }
c@14 282 else if (identifier == "minBPM") {
c@18 283 m_tempogramMinBPM = value;
c@9 284 }
c@14 285 else if (identifier == "maxBPM"){
c@18 286 m_tempogramMaxBPM = value;
c@18 287 }
c@18 288 else if (identifier == "octDiv"){
c@18 289 m_cyclicTempogramOctaveDivider = value;
c@9 290 }
c@9 291
c@9 292 }
c@9 293
c@14 294 TempogramPlugin::ProgramList
c@14 295 TempogramPlugin::getPrograms() const
c@0 296 {
c@0 297 ProgramList list;
c@0 298
c@0 299 // If you have no programs, return an empty list (or simply don't
c@0 300 // implement this function or getCurrentProgram/selectProgram)
c@0 301
c@0 302 return list;
c@0 303 }
c@0 304
c@0 305 string
c@14 306 TempogramPlugin::getCurrentProgram() const
c@0 307 {
c@0 308 return ""; // no programs
c@0 309 }
c@0 310
c@0 311 void
c@14 312 TempogramPlugin::selectProgram(string name)
c@0 313 {
c@0 314 }
c@0 315
c@14 316 TempogramPlugin::OutputList
c@14 317 TempogramPlugin::getOutputDescriptors() const
c@0 318 {
c@0 319 OutputList list;
c@0 320
c@0 321 // See OutputDescriptor documentation for the possibilities here.
c@0 322 // Every plugin must have at least one output.
c@1 323
c@7 324 float d_sampleRate;
c@18 325 float tempogramInputSampleRate = (float)m_inputSampleRate/m_inputStepSize;
c@7 326
c@25 327 OutputDescriptor d1;
c@25 328 d1.identifier = "cyclicTempogram";
c@25 329 d1.name = "Cyclic Tempogram";
c@25 330 d1.description = "Cyclic Tempogram";
c@25 331 d1.unit = "";
c@25 332 d1.hasFixedBinCount = true;
c@25 333 d1.binCount = m_cyclicTempogramOctaveDivider > 0 && !isnan(m_cyclicTempogramOctaveDivider) ? m_cyclicTempogramOctaveDivider : 0;
c@25 334 d1.hasKnownExtents = false;
c@25 335 d1.isQuantized = false;
c@25 336 d1.sampleType = OutputDescriptor::FixedSampleRate;
c@25 337 d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize;
c@25 338 d1.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0;
c@25 339 d1.hasDuration = false;
c@25 340 list.push_back(d1);
c@25 341
c@25 342 OutputDescriptor d2;
c@25 343 d2.identifier = "tempogramDFT";
c@25 344 d2.name = "Tempogram via DFT";
c@25 345 d2.description = "Tempogram via DFT";
c@25 346 d2.unit = "BPM";
c@25 347 d2.hasFixedBinCount = true;
c@25 348 d2.binCount = m_tempogramMaxBin - m_tempogramMinBin + 1;
c@25 349 d2.hasKnownExtents = false;
c@25 350 d2.isQuantized = false;
c@25 351 d2.sampleType = OutputDescriptor::FixedSampleRate;
c@25 352 d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize;
c@25 353 d2.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0.0;
c@25 354 for(int i = m_tempogramMinBin; i <= (int)m_tempogramMaxBin; i++){
c@25 355 float w = ((float)i/m_tempogramFftLength)*(tempogramInputSampleRate);
c@25 356 d2.binNames.push_back(floatToString(w*60));
c@25 357 }
c@25 358 d2.hasDuration = false;
c@25 359 list.push_back(d2);
c@25 360
c@21 361 OutputDescriptor d3;
c@25 362 d3.identifier = "tempogramACT";
c@25 363 d3.name = "Tempogram via ACT";
c@25 364 d3.description = "Tempogram via ACT";
c@25 365 d3.unit = "BPM";
c@21 366 d3.hasFixedBinCount = true;
c@28 367 d3.binCount = m_tempogramMaxLag - m_tempogramMinLag + 1;
c@21 368 d3.hasKnownExtents = false;
c@21 369 d3.isQuantized = false;
c@21 370 d3.sampleType = OutputDescriptor::FixedSampleRate;
c@21 371 d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize;
c@25 372 d3.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0.0;
c@28 373 for(int lag = m_tempogramMaxLag; lag >= (int)m_tempogramMinLag; lag--){
c@28 374 d3.binNames.push_back(floatToString(60/(m_inputStepSize*(lag/m_inputSampleRate))));
c@25 375 }
c@21 376 d3.hasDuration = false;
c@21 377 list.push_back(d3);
c@21 378
c@25 379 OutputDescriptor d4;
c@25 380 d4.identifier = "nc";
c@25 381 d4.name = "Novelty Curve";
c@25 382 d4.description = "Novelty Curve";
c@25 383 d4.unit = "";
c@25 384 d4.hasFixedBinCount = true;
c@25 385 d4.binCount = 1;
c@25 386 d4.hasKnownExtents = false;
c@25 387 d4.isQuantized = false;
c@25 388 d4.sampleType = OutputDescriptor::FixedSampleRate;
c@9 389 d_sampleRate = tempogramInputSampleRate;
c@25 390 d4.sampleRate = d_sampleRate > 0 && !isnan(d_sampleRate) ? d_sampleRate : 0;
c@25 391 d4.hasDuration = false;
c@25 392 list.push_back(d4);
c@18 393
c@0 394 return list;
c@0 395 }
c@0 396
c@20 397 bool
c@20 398 TempogramPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize)
c@20 399 {
c@20 400 if (channels < getMinChannelCount() ||
c@20 401 channels > getMaxChannelCount()) return false;
c@20 402
c@20 403 // Real initialisation work goes here!
c@20 404 m_inputBlockSize = blockSize;
c@20 405 m_inputStepSize = stepSize;
c@20 406
c@24 407 //m_spectrogram = Spectrogram(m_inputBlockSize/2 + 1);
c@21 408 if (!handleParameterValues()) return false;
c@19 409 //cout << m_cyclicTempogramOctaveDivider << endl;
c@4 410
c@0 411 return true;
c@0 412 }
c@0 413
c@0 414 void
c@14 415 TempogramPlugin::reset()
c@0 416 {
c@0 417 // Clear buffers, reset stored values, etc
c@19 418 m_spectrogram.clear();
c@21 419 handleParameterValues();
c@0 420 }
c@0 421
c@14 422 TempogramPlugin::FeatureSet
c@14 423 TempogramPlugin::process(const float *const *inputBuffers, Vamp::RealTime timestamp)
c@0 424 {
c@0 425
c@23 426 int n = m_inputBlockSize/2 + 1;
c@0 427 const float *in = inputBuffers[0];
c@3 428
c@9 429 //calculate magnitude of FrequencyDomain input
c@22 430 vector<float> fftCoefficients;
c@23 431 for (int i = 0; i < n; i++){
c@0 432 float magnitude = sqrt(in[2*i] * in[2*i] + in[2*i + 1] * in[2*i + 1]);
c@18 433 magnitude = magnitude > m_noveltyCurveMinDB ? magnitude : m_noveltyCurveMinDB;
c@22 434 fftCoefficients.push_back(magnitude);
c@0 435 }
c@22 436 m_spectrogram.push_back(fftCoefficients);
c@24 437 //m_spectrogram.push_back(fftCoefficients);
c@21 438
c@23 439 return FeatureSet();
c@0 440 }
c@0 441
c@14 442 TempogramPlugin::FeatureSet
c@14 443 TempogramPlugin::getRemainingFeatures()
c@11 444 {
c@0 445
c@18 446 float * hannWindow = new float[m_tempogramWindowLength];
c@20 447 for (int i = 0; i < (int)m_tempogramWindowLength; i++){
c@14 448 hannWindow[i] = 0.0;
c@4 449 }
c@11 450
c@1 451 FeatureSet featureSet;
c@0 452
c@19 453 //initialise novelty curve processor
c@23 454 int numberOfBlocks = m_spectrogram.size();
c@20 455 //cerr << numberOfBlocks << endl;
c@22 456 NoveltyCurveProcessor nc(m_inputSampleRate, m_inputBlockSize, m_noveltyCurveCompressionConstant);
c@21 457 vector<float> noveltyCurve = nc.spectrogramToNoveltyCurve(m_spectrogram); //calculate novelty curvefrom magnitude data
c@4 458
c@9 459 //push novelty curve data to featureset 1 and set timestamps
c@23 460 for (int i = 0; i < numberOfBlocks; i++){
c@19 461 Feature noveltyCurveFeature;
c@19 462 noveltyCurveFeature.values.push_back(noveltyCurve[i]);
c@19 463 noveltyCurveFeature.hasTimestamp = false;
c@25 464 featureSet[3].push_back(noveltyCurveFeature);
c@21 465 assert(!isnan(noveltyCurveFeature.values.back()));
c@4 466 }
c@4 467
c@9 468 //window function for spectrogram
c@18 469 WindowFunction::hanning(hannWindow, m_tempogramWindowLength);
c@9 470
c@9 471 //initialise spectrogram processor
c@18 472 SpectrogramProcessor spectrogramProcessor(m_tempogramWindowLength, m_tempogramFftLength, m_tempogramHopSize);
c@9 473 //compute spectrogram from novelty curve data (i.e., tempogram)
c@25 474 Tempogram tempogramDFT = spectrogramProcessor.process(&noveltyCurve[0], numberOfBlocks, hannWindow);
c@18 475 delete []hannWindow;
c@18 476 hannWindow = 0;
c@0 477
c@25 478 int tempogramLength = tempogramDFT.size();
c@7 479
c@9 480 //push tempogram data to featureset 0 and set timestamps.
c@7 481 for (int block = 0; block < tempogramLength; block++){
c@25 482 Feature tempogramDFTFeature;
c@28 483
c@28 484 assert(tempogramDFT[block].size() == (m_tempogramFftLength/2 + 1));
c@28 485 for(int k = m_tempogramMinBin; k <= (int)m_tempogramMaxBin; k++){
c@28 486 tempogramDFTFeature.values.push_back(tempogramDFT[block][k]);
c@28 487 }
c@28 488 tempogramDFTFeature.hasTimestamp = false;
c@28 489 featureSet[1].push_back(tempogramDFTFeature);
c@28 490 }
c@28 491
c@28 492 AutocorrelationProcessor autocorrelationProcessor(m_tempogramWindowLength, m_tempogramHopSize);
c@28 493 Tempogram tempogramACT = autocorrelationProcessor.process(&noveltyCurve[0], numberOfBlocks);
c@28 494
c@28 495 for (int block = 0; block < tempogramLength; block++){
c@25 496 Feature tempogramACTFeature;
c@0 497
c@28 498 for(int k = m_tempogramMaxLag; k >= (int)m_tempogramMinLag; k--){
c@25 499 tempogramACTFeature.values.push_back(tempogramACT[block][k]);
c@0 500 }
c@25 501 tempogramACTFeature.hasTimestamp = false;
c@25 502 featureSet[2].push_back(tempogramACTFeature);
c@0 503 }
c@0 504
c@18 505 //Calculate cyclic tempogram
c@22 506 vector< vector<unsigned int> > logBins = calculateTempogramNearestNeighbourLogBins();
c@18 507
c@22 508 //assert((int)logBins.size() == m_cyclicTempogramOctaveDivider*m_cyclicTempogramNumberOfOctaves);
c@18 509 for (int block = 0; block < tempogramLength; block++){
c@19 510 Feature cyclicTempogramFeature;
c@18 511
c@23 512 for (int i = 0; i < m_cyclicTempogramOctaveDivider; i++){
c@18 513 float sum = 0;
c@21 514
c@23 515 for (int j = 0; j < m_cyclicTempogramNumberOfOctaves; j++){
c@25 516 sum += tempogramDFT[block][logBins[j][i]];
c@18 517 }
c@19 518 cyclicTempogramFeature.values.push_back(sum/m_cyclicTempogramNumberOfOctaves);
c@21 519 assert(!isnan(cyclicTempogramFeature.values.back()));
c@18 520 }
c@18 521
c@19 522 cyclicTempogramFeature.hasTimestamp = false;
c@21 523 featureSet[0].push_back(cyclicTempogramFeature);
c@18 524 }
c@0 525
c@0 526 return featureSet;
c@0 527 }
c@22 528
c@22 529 vector< vector<unsigned int> > TempogramPlugin::calculateTempogramNearestNeighbourLogBins() const
c@22 530 {
c@22 531 vector< vector<unsigned int> > logBins;
c@22 532
c@22 533 for (int octave = 0; octave < (int)m_cyclicTempogramNumberOfOctaves; octave++){
c@22 534 vector<unsigned int> octaveBins;
c@22 535
c@22 536 for (int bin = 0; bin < (int)m_cyclicTempogramOctaveDivider; bin++){
c@22 537 float bpm = m_cyclicTempogramMinBPM*pow(2.0f, octave+(float)bin/m_cyclicTempogramOctaveDivider);
c@22 538 octaveBins.push_back(bpmToBin(bpm));
c@23 539 //cout << octaveBins.back() << endl;
c@22 540 }
c@22 541 logBins.push_back(octaveBins);
c@22 542 }
c@22 543
c@22 544 //cerr << logBins.size() << endl;
c@22 545
c@22 546 return logBins;
c@22 547 }
c@22 548
c@22 549 unsigned int TempogramPlugin::bpmToBin(const float &bpm) const
c@22 550 {
c@22 551 float w = (float)bpm/60;
c@22 552 float sampleRate = m_inputSampleRate/m_inputStepSize;
c@22 553 int bin = floor((float)m_tempogramFftLength*w/sampleRate + 0.5);
c@22 554
c@22 555 if(bin < 0) bin = 0;
c@22 556 else if(bin > m_tempogramFftLength/2.0f) bin = m_tempogramFftLength;
c@22 557
c@22 558 return bin;
c@22 559 }
c@22 560
c@22 561 float TempogramPlugin::binToBPM(const int &bin) const
c@22 562 {
c@22 563 float sampleRate = m_inputSampleRate/m_inputStepSize;
c@22 564
c@22 565 return (bin*sampleRate/m_tempogramFftLength)*60;
c@22 566 }
c@22 567
c@22 568 bool TempogramPlugin::handleParameterValues(){
c@22 569
c@22 570 if (m_tempogramHopSize <= 0) return false;
c@22 571 if (m_tempogramLog2FftLength <= 0) return false;
c@22 572
c@22 573 if (m_tempogramFftLength < m_tempogramWindowLength){
c@22 574 m_tempogramFftLength = m_tempogramWindowLength;
c@22 575 }
c@22 576 if (m_tempogramMinBPM >= m_tempogramMaxBPM){
c@22 577 m_tempogramMinBPM = 30;
c@22 578 m_tempogramMaxBPM = 480;
c@22 579 }
c@22 580
c@22 581 float tempogramInputSampleRate = (float)m_inputSampleRate/m_inputStepSize;
c@28 582 m_tempogramMinBin = (max((int)floor(((m_tempogramMinBPM/60)/tempogramInputSampleRate)*m_tempogramFftLength), 0));
c@28 583 m_tempogramMaxBin = (min((int)ceil(((m_tempogramMaxBPM/60)/tempogramInputSampleRate)*m_tempogramFftLength), (int)(m_tempogramFftLength/2)));
c@28 584
c@28 585 m_tempogramMinLag = max((int)ceil((60/(m_inputStepSize * m_tempogramMaxBPM))*m_inputSampleRate), 0);
c@28 586 m_tempogramMaxLag = min((int)floor((60/(m_inputStepSize * m_tempogramMinBPM))*m_inputSampleRate), (int)m_tempogramWindowLength);
c@22 587
c@25 588 if (m_tempogramMinBPM > m_cyclicTempogramMinBPM) m_cyclicTempogramMinBPM = m_tempogramMinBPM; //m_cyclicTempogram can't be less than default = 30
c@22 589 float cyclicTempogramMaxBPM = 480;
c@22 590 if (m_tempogramMaxBPM < cyclicTempogramMaxBPM) cyclicTempogramMaxBPM = m_tempogramMaxBPM;
c@22 591
c@22 592 m_cyclicTempogramNumberOfOctaves = floor(log2(cyclicTempogramMaxBPM/m_cyclicTempogramMinBPM));
c@22 593
c@22 594 return true;
c@22 595 }
c@22 596
c@22 597 string TempogramPlugin::floatToString(float value) const
c@22 598 {
c@22 599 ostringstream ss;
c@22 600
c@22 601 if(!(ss << value)) throw runtime_error("TempogramPlugin::floatToString(): invalid conversion from float to string");
c@22 602 return ss.str();
c@22 603 }