annotate TempogramPlugin.cpp @ 50:45ba1627d802

* Added m_cyclicTempogramReferenceBPM to initialiser list
author Carl Bussey <c.bussey@se10.qmul.ac.uk>
date Tue, 30 Sep 2014 15:00:23 +0100
parents b27e42b68c61
children c7cc649dc9b6
rev   line source
Chris@43 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@0 2
Chris@43 3 /*
Chris@43 4 Vamp Tempogram Plugin
Chris@43 5 Carl Bussey, Centre for Digital Music, Queen Mary University of London
Chris@43 6 Copyright 2014 Queen Mary University of London.
Chris@43 7
Chris@43 8 This program is free software; you can redistribute it and/or
Chris@43 9 modify it under the terms of the GNU General Public License as
Chris@43 10 published by the Free Software Foundation; either version 2 of the
Chris@43 11 License, or (at your option) any later version. See the file
Chris@43 12 COPYING included with this distribution for more information.
Chris@43 13 */
c@0 14
c@14 15 #include "TempogramPlugin.h"
c@25 16
c@0 17 using Vamp::FFT;
c@7 18 using Vamp::RealTime;
c@0 19 using namespace std;
c@0 20
c@14 21 TempogramPlugin::TempogramPlugin(float inputSampleRate) :
c@0 22 Plugin(inputSampleRate),
c@18 23 m_inputBlockSize(0), //host parameter
c@18 24 m_inputStepSize(0), //host parameter
c@29 25 m_noveltyCurveMinDB(-74), //parameter
c@29 26 m_noveltyCurveMinV(0), //set in initialise()
c@18 27 m_noveltyCurveCompressionConstant(1000), //parameter
c@18 28 m_tempogramLog2WindowLength(10), //parameter
c@29 29 m_tempogramWindowLength(0), //set in initialise()
c@18 30 m_tempogramLog2FftLength(m_tempogramLog2WindowLength), //parameter
c@29 31 m_tempogramFftLength(0), //set in initialise()
c@18 32 m_tempogramLog2HopSize(6), //parameter
c@29 33 m_tempogramHopSize(0), //set in initialise()
c@18 34 m_tempogramMinBPM(30), //parameter
c@18 35 m_tempogramMaxBPM(480), //parameter
c@18 36 m_tempogramMinBin(0), //set in initialise()
c@18 37 m_tempogramMaxBin(0), //set in initialise()
c@29 38 m_tempogramMinLag(0), //set in initialise()
c@29 39 m_tempogramMaxLag(0), //set in initialise()
c@18 40 m_cyclicTempogramMinBPM(30), //reset in initialise()
c@18 41 m_cyclicTempogramNumberOfOctaves(0), //set in initialise()
c@49 42 m_cyclicTempogramOctaveDivider(30), //parameter
c@50 43 m_cyclicTempogramReferenceBPM(60) //parameter
c@0 44
c@0 45 // Also be sure to set your plugin parameters (presumably stored
c@0 46 // in member variables) to their default values here -- the host
c@0 47 // will not do that for you
c@0 48 {
c@0 49 }
c@0 50
c@14 51 TempogramPlugin::~TempogramPlugin()
c@0 52 {
c@0 53 //delete stuff
c@0 54 }
c@0 55
c@0 56 string
c@14 57 TempogramPlugin::getIdentifier() const
c@0 58 {
c@0 59 return "tempogram";
c@0 60 }
c@0 61
c@0 62 string
c@14 63 TempogramPlugin::getName() const
c@0 64 {
c@0 65 return "Tempogram";
c@0 66 }
c@0 67
c@0 68 string
c@14 69 TempogramPlugin::getDescription() const
c@0 70 {
c@0 71 return "Cyclic Tempogram as described by Peter Grosche and Meinard Muller";
c@0 72 }
c@0 73
c@0 74 string
c@14 75 TempogramPlugin::getMaker() const
c@0 76 {
c@0 77 return "Carl Bussey";
c@0 78 }
c@0 79
c@0 80 int
c@14 81 TempogramPlugin::getPluginVersion() const
c@0 82 {
c@0 83 return 1;
c@0 84 }
c@0 85
c@0 86 string
c@14 87 TempogramPlugin::getCopyright() const
c@0 88 {
Chris@40 89 return "Copyright 2014 Queen Mary University of London. GPL licence.";
c@0 90 }
c@0 91
c@14 92 TempogramPlugin::InputDomain
c@14 93 TempogramPlugin::getInputDomain() const
c@0 94 {
c@0 95 return FrequencyDomain;
c@0 96 }
c@0 97
c@0 98 size_t
c@14 99 TempogramPlugin::getPreferredBlockSize() const
c@0 100 {
c@9 101 return 2048; // 0 means "I can handle any block size"
c@0 102 }
c@0 103
c@0 104 size_t
c@14 105 TempogramPlugin::getPreferredStepSize() const
c@0 106 {
c@9 107 return 1024; // 0 means "anything sensible"; in practice this
c@0 108 // means the same as the block size for TimeDomain
c@0 109 // plugins, or half of it for FrequencyDomain plugins
c@0 110 }
c@0 111
c@0 112 size_t
c@14 113 TempogramPlugin::getMinChannelCount() const
c@0 114 {
c@0 115 return 1;
c@0 116 }
c@0 117
c@0 118 size_t
c@14 119 TempogramPlugin::getMaxChannelCount() const
c@0 120 {
c@0 121 return 1;
c@0 122 }
c@0 123
c@14 124 TempogramPlugin::ParameterList
c@14 125 TempogramPlugin::getParameterDescriptors() const
c@0 126 {
c@0 127 ParameterList list;
c@0 128
c@0 129 // If the plugin has no adjustable parameters, return an empty
c@0 130 // list here (and there's no need to provide implementations of
c@0 131 // getParameter and setParameter in that case either).
c@0 132
c@0 133 // Note that it is your responsibility to make sure the parameters
c@0 134 // start off having their default values (e.g. in the constructor
c@0 135 // above). The host needs to know the default value so it can do
c@0 136 // things like provide a "reset to default" function, but it will
c@0 137 // not explicitly set your parameters to their defaults for you if
c@0 138 // they have not changed in the mean time.
c@0 139
c@14 140 ParameterDescriptor d1;
c@14 141 d1.identifier = "C";
c@15 142 d1.name = "Novelty Curve Spectrogram Compression Constant";
c@14 143 d1.description = "Spectrogram compression constant, C, used when retrieving the novelty curve from the audio.";
c@14 144 d1.unit = "";
c@14 145 d1.minValue = 2;
c@14 146 d1.maxValue = 10000;
c@14 147 d1.defaultValue = 1000;
c@14 148 d1.isQuantized = false;
c@14 149 list.push_back(d1);
c@29 150
c@29 151 ParameterDescriptor d2;
c@29 152 d2.identifier = "minDB";
c@29 153 d2.name = "Novelty Curve Minimum DB";
c@29 154 d2.description = "Spectrogram minimum DB used when removing unwanted peaks in the Spectrogram when retrieving the novelty curve from the audio.";
c@29 155 d2.unit = "";
c@29 156 d2.minValue = -100;
c@29 157 d2.maxValue = -50;
c@29 158 d2.defaultValue = -74;
c@29 159 d2.isQuantized = false;
c@29 160 list.push_back(d2);
c@9 161
c@14 162 ParameterDescriptor d3;
c@29 163 d3.identifier = "log2TN";
c@29 164 d3.name = "Tempogram Window Length";
c@29 165 d3.description = "FFT window length when analysing the novelty curve and extracting the tempogram time-frequency function.";
c@14 166 d3.unit = "";
c@29 167 d3.minValue = 7;
c@14 168 d3.maxValue = 12;
c@29 169 d3.defaultValue = 10;
c@14 170 d3.isQuantized = true;
c@14 171 d3.quantizeStep = 1;
c@14 172 for (int i = d3.minValue; i <= d3.maxValue; i++){
c@14 173 d3.valueNames.push_back(floatToString(pow((float)2,(float)i)));
c@14 174 }
c@14 175 list.push_back(d3);
c@9 176
c@14 177 ParameterDescriptor d4;
c@29 178 d4.identifier = "log2HopSize";
c@29 179 d4.name = "Tempogram Hopsize";
c@29 180 d4.description = "FFT hopsize when analysing the novelty curve and extracting the tempogram time-frequency function.";
c@14 181 d4.unit = "";
c@14 182 d4.minValue = 6;
c@14 183 d4.maxValue = 12;
c@29 184 d4.defaultValue = 6;
c@14 185 d4.isQuantized = true;
c@14 186 d4.quantizeStep = 1;
c@14 187 for (int i = d4.minValue; i <= d4.maxValue; i++){
c@14 188 d4.valueNames.push_back(floatToString(pow((float)2,(float)i)));
c@14 189 }
c@14 190 list.push_back(d4);
c@14 191
c@14 192 ParameterDescriptor d5;
c@29 193 d5.identifier = "log2FftLength";
c@29 194 d5.name = "Tempogram FFT Length";
c@29 195 d5.description = "FFT length when analysing the novelty curve and extracting the tempogram time-frequency function. This parameter determines the amount of zero padding.";
c@14 196 d5.unit = "";
c@29 197 d5.minValue = 6;
c@29 198 d5.maxValue = 12;
Chris@42 199 d5.defaultValue = 10;
c@14 200 d5.isQuantized = true;
c@29 201 d5.quantizeStep = 1;
c@29 202 for (int i = d5.minValue; i <= d5.maxValue; i++){
Chris@41 203 d5.valueNames.push_back(floatToString(pow((float)2,(float)i)));
c@29 204 }
c@14 205 list.push_back(d5);
c@14 206
c@14 207 ParameterDescriptor d6;
c@29 208 d6.identifier = "minBPM";
c@29 209 d6.name = "(Cyclic) Tempogram Minimum BPM";
c@29 210 d6.description = "The minimum BPM of the tempogram output bins.";
c@14 211 d6.unit = "";
c@29 212 d6.minValue = 0;
c@14 213 d6.maxValue = 2000;
c@29 214 d6.defaultValue = 30;
c@14 215 d6.isQuantized = true;
c@14 216 d6.quantizeStep = 5;
c@14 217 list.push_back(d6);
c@18 218
c@18 219 ParameterDescriptor d7;
c@29 220 d7.identifier = "maxBPM";
c@29 221 d7.name = "(Cyclic) Tempogram Maximum BPM";
c@29 222 d7.description = "The maximum BPM of the tempogram output bins.";
c@18 223 d7.unit = "";
c@29 224 d7.minValue = 30;
c@29 225 d7.maxValue = 2000;
c@29 226 d7.defaultValue = 480;
c@18 227 d7.isQuantized = true;
c@29 228 d7.quantizeStep = 5;
c@18 229 list.push_back(d7);
c@29 230
c@29 231 ParameterDescriptor d8;
c@29 232 d8.identifier = "octDiv";
c@29 233 d8.name = "Cyclic Tempogram Octave Divider";
c@29 234 d8.description = "The number bins within each octave.";
c@29 235 d8.unit = "";
c@29 236 d8.minValue = 5;
c@29 237 d8.maxValue = 60;
c@29 238 d8.defaultValue = 30;
c@29 239 d8.isQuantized = true;
c@29 240 d8.quantizeStep = 1;
c@29 241 list.push_back(d8);
c@0 242
c@0 243 return list;
c@0 244 }
c@0 245
c@0 246 float
c@14 247 TempogramPlugin::getParameter(string identifier) const
c@0 248 {
c@0 249 if (identifier == "C") {
c@18 250 return m_noveltyCurveCompressionConstant; // return the ACTUAL current value of your parameter here!
c@0 251 }
c@29 252 else if (identifier == "minDB"){
c@29 253 return m_noveltyCurveMinDB;
c@29 254 }
c@14 255 else if (identifier == "log2TN"){
c@18 256 return m_tempogramLog2WindowLength;
c@9 257 }
c@14 258 else if (identifier == "log2HopSize"){
c@18 259 return m_tempogramLog2HopSize;
c@14 260 }
c@14 261 else if (identifier == "log2FftLength"){
c@18 262 return m_tempogramLog2FftLength;
c@14 263 }
c@14 264 else if (identifier == "minBPM") {
c@18 265 return m_tempogramMinBPM;
c@9 266 }
c@14 267 else if (identifier == "maxBPM"){
c@18 268 return m_tempogramMaxBPM;
c@18 269 }
c@18 270 else if (identifier == "octDiv"){
c@18 271 return m_cyclicTempogramOctaveDivider;
c@0 272 }
c@0 273
c@0 274 return 0;
c@0 275 }
c@0 276
c@0 277 void
c@14 278 TempogramPlugin::setParameter(string identifier, float value)
c@0 279 {
c@9 280
c@0 281 if (identifier == "C") {
c@18 282 m_noveltyCurveCompressionConstant = value; // set the actual value of your parameter
c@0 283 }
c@29 284 else if (identifier == "minDB"){
c@29 285 m_noveltyCurveMinDB = value;
c@29 286 }
c@14 287 else if (identifier == "log2TN") {
c@18 288 m_tempogramLog2WindowLength = value;
c@0 289 }
c@14 290 else if (identifier == "log2HopSize"){
c@30 291 m_tempogramLog2HopSize = value;
c@14 292 }
c@18 293 else if (identifier == "log2FftLength"){
c@30 294 m_tempogramLog2FftLength = value;
c@14 295 }
c@14 296 else if (identifier == "minBPM") {
c@18 297 m_tempogramMinBPM = value;
c@9 298 }
c@14 299 else if (identifier == "maxBPM"){
c@18 300 m_tempogramMaxBPM = value;
c@18 301 }
c@18 302 else if (identifier == "octDiv"){
c@18 303 m_cyclicTempogramOctaveDivider = value;
c@9 304 }
c@9 305
c@9 306 }
c@9 307
c@14 308 TempogramPlugin::ProgramList
c@14 309 TempogramPlugin::getPrograms() const
c@0 310 {
c@0 311 ProgramList list;
c@0 312
c@0 313 // If you have no programs, return an empty list (or simply don't
c@0 314 // implement this function or getCurrentProgram/selectProgram)
c@0 315
c@0 316 return list;
c@0 317 }
c@0 318
c@0 319 string
c@14 320 TempogramPlugin::getCurrentProgram() const
c@0 321 {
c@0 322 return ""; // no programs
c@0 323 }
c@0 324
c@0 325 void
c@14 326 TempogramPlugin::selectProgram(string name)
c@0 327 {
c@0 328 }
c@0 329
c@14 330 TempogramPlugin::OutputList
c@14 331 TempogramPlugin::getOutputDescriptors() const
c@0 332 {
c@0 333 OutputList list;
c@0 334
c@0 335 // See OutputDescriptor documentation for the possibilities here.
c@0 336 // Every plugin must have at least one output.
c@1 337
c@7 338 float d_sampleRate;
c@18 339 float tempogramInputSampleRate = (float)m_inputSampleRate/m_inputStepSize;
c@25 340 OutputDescriptor d1;
c@25 341 d1.identifier = "cyclicTempogram";
c@25 342 d1.name = "Cyclic Tempogram";
Chris@43 343 d1.description = "Cyclic tempogram calculated by \"octave folding\" the DFT tempogram";
c@25 344 d1.unit = "";
c@25 345 d1.hasFixedBinCount = true;
c@25 346 d1.binCount = m_cyclicTempogramOctaveDivider > 0 && !isnan(m_cyclicTempogramOctaveDivider) ? m_cyclicTempogramOctaveDivider : 0;
c@25 347 d1.hasKnownExtents = false;
c@25 348 d1.isQuantized = false;
c@25 349 d1.sampleType = OutputDescriptor::FixedSampleRate;
c@25 350 d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize;
c@25 351 d1.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0;
c@25 352 d1.hasDuration = false;
c@25 353 list.push_back(d1);
c@25 354
c@25 355 OutputDescriptor d2;
c@25 356 d2.identifier = "tempogramDFT";
c@25 357 d2.name = "Tempogram via DFT";
Chris@43 358 d2.description = "Tempogram calculated using Discrete Fourier Transform method";
Chris@43 359 d2.unit = ""; // unit of bin contents, not of "bin label", so not bpm
c@25 360 d2.hasFixedBinCount = true;
c@25 361 d2.binCount = m_tempogramMaxBin - m_tempogramMinBin + 1;
c@25 362 d2.hasKnownExtents = false;
c@25 363 d2.isQuantized = false;
c@25 364 d2.sampleType = OutputDescriptor::FixedSampleRate;
c@25 365 d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize;
c@25 366 d2.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0.0;
c@25 367 for(int i = m_tempogramMinBin; i <= (int)m_tempogramMaxBin; i++){
c@25 368 float w = ((float)i/m_tempogramFftLength)*(tempogramInputSampleRate);
c@25 369 d2.binNames.push_back(floatToString(w*60));
c@25 370 }
c@25 371 d2.hasDuration = false;
c@25 372 list.push_back(d2);
c@25 373
c@21 374 OutputDescriptor d3;
c@25 375 d3.identifier = "tempogramACT";
c@25 376 d3.name = "Tempogram via ACT";
Chris@43 377 d3.description = "Tempogram calculated using autocorrelation method";
Chris@43 378 d3.unit = ""; // unit of bin contents, not of "bin label", so not bpm
c@21 379 d3.hasFixedBinCount = true;
c@28 380 d3.binCount = m_tempogramMaxLag - m_tempogramMinLag + 1;
c@21 381 d3.hasKnownExtents = false;
c@21 382 d3.isQuantized = false;
c@21 383 d3.sampleType = OutputDescriptor::FixedSampleRate;
c@21 384 d_sampleRate = tempogramInputSampleRate/m_tempogramHopSize;
c@25 385 d3.sampleRate = d_sampleRate > 0.0 && !isnan(d_sampleRate) ? d_sampleRate : 0.0;
c@28 386 for(int lag = m_tempogramMaxLag; lag >= (int)m_tempogramMinLag; lag--){
c@28 387 d3.binNames.push_back(floatToString(60/(m_inputStepSize*(lag/m_inputSampleRate))));
c@25 388 }
c@21 389 d3.hasDuration = false;
c@21 390 list.push_back(d3);
c@21 391
c@25 392 OutputDescriptor d4;
c@25 393 d4.identifier = "nc";
c@25 394 d4.name = "Novelty Curve";
Chris@43 395 d4.description = "Novelty curve underlying the tempogram calculations";
c@25 396 d4.unit = "";
c@25 397 d4.hasFixedBinCount = true;
c@25 398 d4.binCount = 1;
c@25 399 d4.hasKnownExtents = false;
c@25 400 d4.isQuantized = false;
c@25 401 d4.sampleType = OutputDescriptor::FixedSampleRate;
c@9 402 d_sampleRate = tempogramInputSampleRate;
c@25 403 d4.sampleRate = d_sampleRate > 0 && !isnan(d_sampleRate) ? d_sampleRate : 0;
c@25 404 d4.hasDuration = false;
c@25 405 list.push_back(d4);
c@18 406
c@0 407 return list;
c@0 408 }
c@0 409
c@20 410 bool
c@20 411 TempogramPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize)
c@20 412 {
c@20 413 if (channels < getMinChannelCount() ||
c@20 414 channels > getMaxChannelCount()) return false;
c@20 415
c@20 416 // Real initialisation work goes here!
c@20 417 m_inputBlockSize = blockSize;
c@20 418 m_inputStepSize = stepSize;
c@20 419
c@24 420 //m_spectrogram = Spectrogram(m_inputBlockSize/2 + 1);
c@21 421 if (!handleParameterValues()) return false;
c@19 422 //cout << m_cyclicTempogramOctaveDivider << endl;
c@4 423
c@0 424 return true;
c@0 425 }
c@0 426
c@0 427 void
c@14 428 TempogramPlugin::reset()
c@0 429 {
c@0 430 // Clear buffers, reset stored values, etc
c@19 431 m_spectrogram.clear();
c@21 432 handleParameterValues();
c@0 433 }
c@0 434
c@14 435 TempogramPlugin::FeatureSet
c@14 436 TempogramPlugin::process(const float *const *inputBuffers, Vamp::RealTime timestamp)
c@0 437 {
c@23 438 int n = m_inputBlockSize/2 + 1;
c@0 439 const float *in = inputBuffers[0];
c@3 440
c@9 441 //calculate magnitude of FrequencyDomain input
c@22 442 vector<float> fftCoefficients;
c@23 443 for (int i = 0; i < n; i++){
c@0 444 float magnitude = sqrt(in[2*i] * in[2*i] + in[2*i + 1] * in[2*i + 1]);
c@29 445 magnitude = magnitude > m_noveltyCurveMinV ? magnitude : m_noveltyCurveMinV;
c@22 446 fftCoefficients.push_back(magnitude);
c@0 447 }
c@22 448 m_spectrogram.push_back(fftCoefficients);
c@24 449 //m_spectrogram.push_back(fftCoefficients);
c@21 450
c@23 451 return FeatureSet();
c@0 452 }
c@0 453
c@14 454 TempogramPlugin::FeatureSet
c@14 455 TempogramPlugin::getRemainingFeatures()
c@11 456 {
c@0 457
c@18 458 float * hannWindow = new float[m_tempogramWindowLength];
c@20 459 for (int i = 0; i < (int)m_tempogramWindowLength; i++){
c@14 460 hannWindow[i] = 0.0;
c@4 461 }
c@11 462
c@1 463 FeatureSet featureSet;
c@0 464
c@19 465 //initialise novelty curve processor
c@23 466 int numberOfBlocks = m_spectrogram.size();
Chris@48 467
c@22 468 NoveltyCurveProcessor nc(m_inputSampleRate, m_inputBlockSize, m_noveltyCurveCompressionConstant);
c@21 469 vector<float> noveltyCurve = nc.spectrogramToNoveltyCurve(m_spectrogram); //calculate novelty curvefrom magnitude data
c@4 470
c@9 471 //push novelty curve data to featureset 1 and set timestamps
c@23 472 for (int i = 0; i < numberOfBlocks; i++){
c@19 473 Feature noveltyCurveFeature;
c@19 474 noveltyCurveFeature.values.push_back(noveltyCurve[i]);
c@19 475 noveltyCurveFeature.hasTimestamp = false;
c@25 476 featureSet[3].push_back(noveltyCurveFeature);
c@21 477 assert(!isnan(noveltyCurveFeature.values.back()));
c@4 478 }
c@4 479
c@9 480 //window function for spectrogram
c@18 481 WindowFunction::hanning(hannWindow, m_tempogramWindowLength);
c@9 482
c@9 483 //initialise spectrogram processor
c@18 484 SpectrogramProcessor spectrogramProcessor(m_tempogramWindowLength, m_tempogramFftLength, m_tempogramHopSize);
c@9 485 //compute spectrogram from novelty curve data (i.e., tempogram)
c@25 486 Tempogram tempogramDFT = spectrogramProcessor.process(&noveltyCurve[0], numberOfBlocks, hannWindow);
c@18 487 delete []hannWindow;
c@18 488 hannWindow = 0;
c@0 489
c@25 490 int tempogramLength = tempogramDFT.size();
c@7 491
c@9 492 //push tempogram data to featureset 0 and set timestamps.
c@7 493 for (int block = 0; block < tempogramLength; block++){
c@25 494 Feature tempogramDFTFeature;
c@28 495
c@28 496 assert(tempogramDFT[block].size() == (m_tempogramFftLength/2 + 1));
c@28 497 for(int k = m_tempogramMinBin; k <= (int)m_tempogramMaxBin; k++){
c@28 498 tempogramDFTFeature.values.push_back(tempogramDFT[block][k]);
c@28 499 }
c@28 500 tempogramDFTFeature.hasTimestamp = false;
c@28 501 featureSet[1].push_back(tempogramDFTFeature);
c@28 502 }
c@28 503
c@28 504 AutocorrelationProcessor autocorrelationProcessor(m_tempogramWindowLength, m_tempogramHopSize);
c@28 505 Tempogram tempogramACT = autocorrelationProcessor.process(&noveltyCurve[0], numberOfBlocks);
c@28 506
c@28 507 for (int block = 0; block < tempogramLength; block++){
c@25 508 Feature tempogramACTFeature;
Chris@44 509
c@28 510 for(int k = m_tempogramMaxLag; k >= (int)m_tempogramMinLag; k--){
c@25 511 tempogramACTFeature.values.push_back(tempogramACT[block][k]);
c@0 512 }
c@25 513 tempogramACTFeature.hasTimestamp = false;
c@25 514 featureSet[2].push_back(tempogramACTFeature);
c@0 515 }
c@0 516
c@18 517 //Calculate cyclic tempogram
c@22 518 vector< vector<unsigned int> > logBins = calculateTempogramNearestNeighbourLogBins();
c@18 519
c@22 520 //assert((int)logBins.size() == m_cyclicTempogramOctaveDivider*m_cyclicTempogramNumberOfOctaves);
c@18 521 for (int block = 0; block < tempogramLength; block++){
c@19 522 Feature cyclicTempogramFeature;
c@18 523
c@23 524 for (int i = 0; i < m_cyclicTempogramOctaveDivider; i++){
c@18 525 float sum = 0;
c@21 526
c@23 527 for (int j = 0; j < m_cyclicTempogramNumberOfOctaves; j++){
Chris@48 528 sum += tempogramDFT[block][logBins[j][i]];
c@18 529 }
c@19 530 cyclicTempogramFeature.values.push_back(sum/m_cyclicTempogramNumberOfOctaves);
c@21 531 assert(!isnan(cyclicTempogramFeature.values.back()));
c@18 532 }
c@18 533
c@19 534 cyclicTempogramFeature.hasTimestamp = false;
c@21 535 featureSet[0].push_back(cyclicTempogramFeature);
c@18 536 }
c@0 537
c@0 538 return featureSet;
c@0 539 }
c@22 540
c@22 541 vector< vector<unsigned int> > TempogramPlugin::calculateTempogramNearestNeighbourLogBins() const
c@22 542 {
c@22 543 vector< vector<unsigned int> > logBins;
c@22 544
c@22 545 for (int octave = 0; octave < (int)m_cyclicTempogramNumberOfOctaves; octave++){
c@22 546 vector<unsigned int> octaveBins;
Chris@47 547
c@22 548 for (int bin = 0; bin < (int)m_cyclicTempogramOctaveDivider; bin++){
c@22 549 float bpm = m_cyclicTempogramMinBPM*pow(2.0f, octave+(float)bin/m_cyclicTempogramOctaveDivider);
c@22 550 octaveBins.push_back(bpmToBin(bpm));
c@22 551 }
c@22 552 logBins.push_back(octaveBins);
c@22 553 }
c@22 554
c@22 555 return logBins;
c@22 556 }
c@22 557
c@22 558 unsigned int TempogramPlugin::bpmToBin(const float &bpm) const
c@22 559 {
c@22 560 float w = (float)bpm/60;
c@22 561 float sampleRate = m_inputSampleRate/m_inputStepSize;
c@22 562 int bin = floor((float)m_tempogramFftLength*w/sampleRate + 0.5);
c@22 563
c@22 564 if(bin < 0) bin = 0;
Chris@46 565 else if(bin > m_tempogramFftLength/2.0f) bin = m_tempogramFftLength/2.0f;
c@22 566
c@22 567 return bin;
c@22 568 }
c@22 569
c@22 570 float TempogramPlugin::binToBPM(const int &bin) const
c@22 571 {
c@22 572 float sampleRate = m_inputSampleRate/m_inputStepSize;
c@22 573
c@22 574 return (bin*sampleRate/m_tempogramFftLength)*60;
c@22 575 }
c@22 576
c@22 577 bool TempogramPlugin::handleParameterValues(){
c@22 578
Chris@42 579 if (m_tempogramLog2HopSize <= 0) {
Chris@42 580 cerr << "Tempogram log2 hop size " << m_tempogramLog2HopSize
Chris@42 581 << " <= 0, failing initialise" << endl;
Chris@42 582 return false;
Chris@42 583 }
Chris@42 584 if (m_tempogramLog2FftLength <= 0) {
Chris@42 585 cerr << "Tempogram log2 fft length " << m_tempogramLog2FftLength
Chris@42 586 << " <= 0, failing initialise" << endl;
Chris@42 587 return false;
Chris@42 588 }
c@22 589
Chris@42 590 if (m_tempogramMinBPM < 1) {
Chris@42 591 m_tempogramMinBPM = 1;
Chris@42 592 }
c@22 593 if (m_tempogramMinBPM >= m_tempogramMaxBPM){
c@22 594 m_tempogramMinBPM = 30;
c@22 595 m_tempogramMaxBPM = 480;
c@22 596 }
c@22 597
c@29 598 m_noveltyCurveMinV = pow(10,(float)m_noveltyCurveMinDB/20);
c@29 599
c@29 600 m_tempogramWindowLength = pow(2,m_tempogramLog2WindowLength);
c@29 601 m_tempogramHopSize = pow(2,m_tempogramLog2HopSize);
c@29 602 m_tempogramFftLength = pow(2,m_tempogramLog2FftLength);
c@29 603
c@30 604 if (m_tempogramFftLength < m_tempogramWindowLength){
c@30 605 m_tempogramFftLength = m_tempogramWindowLength;
c@30 606 }
c@30 607
c@22 608 float tempogramInputSampleRate = (float)m_inputSampleRate/m_inputStepSize;
c@28 609 m_tempogramMinBin = (max((int)floor(((m_tempogramMinBPM/60)/tempogramInputSampleRate)*m_tempogramFftLength), 0));
c@28 610 m_tempogramMaxBin = (min((int)ceil(((m_tempogramMaxBPM/60)/tempogramInputSampleRate)*m_tempogramFftLength), (int)(m_tempogramFftLength/2)));
Chris@32 611
Chris@32 612 if (m_tempogramMaxBin < m_tempogramMinBin) {
Chris@32 613 cerr << "At audio sample rate " << m_inputSampleRate
Chris@32 614 << ", tempogram sample rate " << tempogramInputSampleRate
Chris@32 615 << " with bpm range " << m_tempogramMinBPM << " -> "
Chris@32 616 << m_tempogramMaxBPM << ", min bin = " << m_tempogramMinBin
Chris@32 617 << " > max bin " << m_tempogramMaxBin
Chris@32 618 << ": can't proceed, failing initialise" << endl;
Chris@32 619 return false;
Chris@32 620 }
c@28 621
c@28 622 m_tempogramMinLag = max((int)ceil((60/(m_inputStepSize * m_tempogramMaxBPM))*m_inputSampleRate), 0);
Chris@45 623 m_tempogramMaxLag = min((int)floor((60/(m_inputStepSize * m_tempogramMinBPM))*m_inputSampleRate), (int)m_tempogramWindowLength-1);
Chris@32 624
Chris@32 625 if (m_tempogramMaxLag < m_tempogramMinLag) {
Chris@32 626 cerr << "At audio sample rate " << m_inputSampleRate
Chris@32 627 << ", tempogram sample rate " << tempogramInputSampleRate
Chris@42 628 << ", window length " << m_tempogramWindowLength
Chris@32 629 << " with bpm range " << m_tempogramMinBPM << " -> "
Chris@42 630 << m_tempogramMaxBPM << ", min lag = " << m_tempogramMinLag
Chris@42 631 << " > max lag " << m_tempogramMaxLag
Chris@32 632 << ": can't proceed, failing initialise" << endl;
Chris@32 633 return false;
Chris@32 634 }
c@22 635
Chris@47 636 m_cyclicTempogramMinBPM = max(binToBPM(m_tempogramMinBin), m_tempogramMinBPM);
Chris@47 637 float cyclicTempogramMaxBPM = min(binToBPM(m_tempogramMaxBin), m_tempogramMaxBPM);
Chris@47 638
c@22 639 m_cyclicTempogramNumberOfOctaves = floor(log2(cyclicTempogramMaxBPM/m_cyclicTempogramMinBPM));
Chris@42 640
Chris@42 641 if (m_cyclicTempogramNumberOfOctaves < 1) {
Chris@42 642 cerr << "At audio sample rate " << m_inputSampleRate
Chris@42 643 << ", tempogram sample rate " << tempogramInputSampleRate
Chris@42 644 << " with bpm range " << m_tempogramMinBPM << " -> "
Chris@42 645 << m_tempogramMaxBPM << ", cyclic tempogram min bpm = "
Chris@42 646 << m_cyclicTempogramMinBPM << " and max bpm = "
Chris@42 647 << cyclicTempogramMaxBPM << " giving number of octaves = "
Chris@42 648 << m_cyclicTempogramNumberOfOctaves
Chris@42 649 << ": can't proceed, failing initialise" << endl;
Chris@42 650 return false;
Chris@42 651 }
c@22 652
c@22 653 return true;
c@22 654 }
c@22 655
c@22 656 string TempogramPlugin::floatToString(float value) const
c@22 657 {
c@22 658 ostringstream ss;
c@22 659
c@22 660 if(!(ss << value)) throw runtime_error("TempogramPlugin::floatToString(): invalid conversion from float to string");
c@22 661 return ss.str();
c@22 662 }