annotate SimpleCepstrum.cpp @ 46:a17bca16933a tip

Add minimal README and COPYING
author Chris Cannam
date Fri, 06 Mar 2020 11:01:17 +0000
parents f021dc97da29
children
rev   line source
Chris@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@7 2 /*
Chris@38 3 This file is Copyright (c) 2012 Chris Cannam
Chris@38 4
Chris@7 5 Permission is hereby granted, free of charge, to any person
Chris@7 6 obtaining a copy of this software and associated documentation
Chris@7 7 files (the "Software"), to deal in the Software without
Chris@7 8 restriction, including without limitation the rights to use, copy,
Chris@7 9 modify, merge, publish, distribute, sublicense, and/or sell copies
Chris@7 10 of the Software, and to permit persons to whom the Software is
Chris@7 11 furnished to do so, subject to the following conditions:
Chris@7 12
Chris@7 13 The above copyright notice and this permission notice shall be
Chris@7 14 included in all copies or substantial portions of the Software.
Chris@7 15
Chris@7 16 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
Chris@7 17 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
Chris@7 18 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
Chris@7 19 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
Chris@7 20 ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
Chris@7 21 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
Chris@7 22 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Chris@7 23 */
Chris@0 24
Chris@0 25 #include "SimpleCepstrum.h"
Chris@0 26
Chris@33 27 #include "vamp-sdk/FFT.h"
Chris@33 28
Chris@0 29 #include <vector>
Chris@0 30 #include <algorithm>
Chris@0 31
Chris@0 32 #include <cstdio>
Chris@0 33 #include <cmath>
Chris@4 34 #include <complex>
Chris@0 35
Chris@33 36 #if ( VAMP_SDK_MAJOR_VERSION < 2 || ( VAMP_SDK_MAJOR_VERSION == 2 && VAMP_SDK_MINOR_VERSION < 4 ) )
Chris@33 37 #error Vamp SDK version 2.4 or newer required
Chris@33 38 #endif
Chris@33 39
Chris@0 40 using std::string;
Chris@0 41
Chris@0 42 SimpleCepstrum::SimpleCepstrum(float inputSampleRate) :
Chris@0 43 Plugin(inputSampleRate),
Chris@0 44 m_channels(0),
Chris@0 45 m_stepSize(256),
Chris@0 46 m_blockSize(1024),
Chris@0 47 m_fmin(50),
Chris@0 48 m_fmax(1000),
Chris@10 49 m_histlen(1),
Chris@10 50 m_vflen(1),
Chris@3 51 m_clamp(false),
Chris@5 52 m_method(InverseSymmetric),
Chris@5 53 m_binFrom(0),
Chris@5 54 m_binTo(0),
Chris@5 55 m_bins(0),
Chris@5 56 m_history(0)
Chris@0 57 {
Chris@0 58 }
Chris@0 59
Chris@0 60 SimpleCepstrum::~SimpleCepstrum()
Chris@0 61 {
Chris@5 62 if (m_history) {
Chris@5 63 for (int i = 0; i < m_histlen; ++i) {
Chris@5 64 delete[] m_history[i];
Chris@5 65 }
Chris@5 66 delete[] m_history;
Chris@5 67 }
Chris@0 68 }
Chris@0 69
Chris@0 70 string
Chris@0 71 SimpleCepstrum::getIdentifier() const
Chris@0 72 {
Chris@0 73 return "simple-cepstrum";
Chris@0 74 }
Chris@0 75
Chris@0 76 string
Chris@0 77 SimpleCepstrum::getName() const
Chris@0 78 {
Chris@0 79 return "Simple Cepstrum";
Chris@0 80 }
Chris@0 81
Chris@0 82 string
Chris@0 83 SimpleCepstrum::getDescription() const
Chris@0 84 {
Chris@2 85 return "Return simple cepstral data from DFT bins. This plugin is intended for casual inspection of cepstral data. It returns a lot of different sorts of data and is quite slow; it's not a good way to extract a single feature rapidly.";
Chris@0 86 }
Chris@0 87
Chris@0 88 string
Chris@0 89 SimpleCepstrum::getMaker() const
Chris@0 90 {
Chris@7 91 return "Chris Cannam";
Chris@0 92 }
Chris@0 93
Chris@0 94 int
Chris@0 95 SimpleCepstrum::getPluginVersion() const
Chris@0 96 {
Chris@0 97 // Increment this each time you release a version that behaves
Chris@0 98 // differently from the previous one
Chris@0 99 return 1;
Chris@0 100 }
Chris@0 101
Chris@0 102 string
Chris@0 103 SimpleCepstrum::getCopyright() const
Chris@0 104 {
Chris@7 105 return "Freely redistributable (BSD license)";
Chris@0 106 }
Chris@0 107
Chris@0 108 SimpleCepstrum::InputDomain
Chris@0 109 SimpleCepstrum::getInputDomain() const
Chris@0 110 {
Chris@0 111 return FrequencyDomain;
Chris@0 112 }
Chris@0 113
Chris@0 114 size_t
Chris@0 115 SimpleCepstrum::getPreferredBlockSize() const
Chris@0 116 {
Chris@0 117 return 1024;
Chris@0 118 }
Chris@0 119
Chris@0 120 size_t
Chris@0 121 SimpleCepstrum::getPreferredStepSize() const
Chris@0 122 {
Chris@0 123 return 256;
Chris@0 124 }
Chris@0 125
Chris@0 126 size_t
Chris@0 127 SimpleCepstrum::getMinChannelCount() const
Chris@0 128 {
Chris@0 129 return 1;
Chris@0 130 }
Chris@0 131
Chris@0 132 size_t
Chris@0 133 SimpleCepstrum::getMaxChannelCount() const
Chris@0 134 {
Chris@0 135 return 1;
Chris@0 136 }
Chris@0 137
Chris@0 138 SimpleCepstrum::ParameterList
Chris@0 139 SimpleCepstrum::getParameterDescriptors() const
Chris@0 140 {
Chris@0 141 ParameterList list;
Chris@0 142
Chris@0 143 ParameterDescriptor d;
Chris@0 144
Chris@0 145 d.identifier = "fmin";
Chris@0 146 d.name = "Minimum frequency";
Chris@43 147 d.description = "Frequency whose period corresponds to the quefrency of the last cepstrum bin in range";
Chris@0 148 d.unit = "Hz";
Chris@0 149 d.minValue = m_inputSampleRate / m_blockSize;
Chris@0 150 d.maxValue = m_inputSampleRate / 2;
Chris@0 151 d.defaultValue = 50;
Chris@0 152 d.isQuantized = false;
Chris@0 153 list.push_back(d);
Chris@0 154
Chris@0 155 d.identifier = "fmax";
Chris@0 156 d.name = "Maximum frequency";
Chris@43 157 d.description = "Frequency whose period corresponds to the quefrency of the first cepstrum bin in range";
Chris@0 158 d.unit = "Hz";
Chris@0 159 d.minValue = m_inputSampleRate / m_blockSize;
Chris@0 160 d.maxValue = m_inputSampleRate / 2;
Chris@0 161 d.defaultValue = 1000;
Chris@0 162 d.isQuantized = false;
Chris@0 163 list.push_back(d);
Chris@0 164
Chris@5 165 d.identifier = "histlen";
Chris@5 166 d.name = "Mean filter history length";
Chris@43 167 d.description = "Length of mean filter used for smoothing cepstrum across time bins";
Chris@5 168 d.unit = "";
Chris@5 169 d.minValue = 1;
Chris@5 170 d.maxValue = 10;
Chris@10 171 d.defaultValue = 1;
Chris@5 172 d.isQuantized = true;
Chris@5 173 d.quantizeStep = 1;
Chris@5 174 list.push_back(d);
Chris@5 175
Chris@10 176 d.identifier = "vflen";
Chris@10 177 d.name = "Vertical filter length";
Chris@43 178 d.description = "Length of mean filter used for smoothing cepstrum across quefrency bins";
Chris@10 179 d.unit = "";
Chris@10 180 d.minValue = 1;
Chris@10 181 d.maxValue = 11;
Chris@10 182 d.defaultValue = 1;
Chris@10 183 d.isQuantized = true;
Chris@10 184 d.quantizeStep = 2;
Chris@10 185 list.push_back(d);
Chris@10 186
Chris@3 187 d.identifier = "method";
Chris@3 188 d.name = "Cepstrum transform method";
Chris@44 189 d.description = "Method to use for calculating cepstrum, starting from the complex short-time Fourier transform of the input audio.\nInverse symmetric - Real part of inverse FFT of log magnitude spectrum, with frequencies above Nyquist reflecting those below it.\nInverse asymmetric - Real part of inverse FFT of log magnitude spectrum, with frequencies above Nyquist set to zero.\nInverse complex - Real part of inverse FFT of complex log spectrum.\nForward magnitude - Magnitude of forward FFT of log magnitude spectrum.\nForward difference - Difference between imaginary and real parts of forward FFT of log magnitude spectrum";
Chris@44 190 d.unit = "";
Chris@3 191 d.minValue = 0;
Chris@5 192 d.maxValue = 4;
Chris@3 193 d.defaultValue = 0;
Chris@3 194 d.isQuantized = true;
Chris@3 195 d.quantizeStep = 1;
Chris@3 196 d.valueNames.push_back("Inverse symmetric");
Chris@3 197 d.valueNames.push_back("Inverse asymmetric");
Chris@4 198 d.valueNames.push_back("Inverse complex");
Chris@3 199 d.valueNames.push_back("Forward magnitude");
Chris@3 200 d.valueNames.push_back("Forward difference");
Chris@3 201 list.push_back(d);
Chris@3 202
Chris@10 203 d.identifier = "clamp";
Chris@10 204 d.name = "Clamp negative values in cepstrum at zero";
Chris@44 205 d.description = "If set, no negative values will be returned; they will be replaced by zeroes";
Chris@44 206 d.unit = "";
Chris@10 207 d.minValue = 0;
Chris@10 208 d.maxValue = 1;
Chris@10 209 d.defaultValue = 0;
Chris@10 210 d.isQuantized = true;
Chris@10 211 d.quantizeStep = 1;
Chris@10 212 d.valueNames.clear();
Chris@10 213 list.push_back(d);
Chris@10 214
Chris@0 215 return list;
Chris@0 216 }
Chris@0 217
Chris@0 218 float
Chris@0 219 SimpleCepstrum::getParameter(string identifier) const
Chris@0 220 {
Chris@0 221 if (identifier == "fmin") return m_fmin;
Chris@0 222 else if (identifier == "fmax") return m_fmax;
Chris@5 223 else if (identifier == "histlen") return m_histlen;
Chris@10 224 else if (identifier == "vflen") return m_vflen;
Chris@10 225 else if (identifier == "clamp") return (m_clamp ? 1 : 0);
Chris@3 226 else if (identifier == "method") return (int)m_method;
Chris@0 227 else return 0.f;
Chris@0 228 }
Chris@0 229
Chris@0 230 void
Chris@0 231 SimpleCepstrum::setParameter(string identifier, float value)
Chris@0 232 {
Chris@0 233 if (identifier == "fmin") m_fmin = value;
Chris@0 234 else if (identifier == "fmax") m_fmax = value;
Chris@5 235 else if (identifier == "histlen") m_histlen = value;
Chris@10 236 else if (identifier == "vflen") m_vflen = value;
Chris@10 237 else if (identifier == "clamp") m_clamp = (value > 0.5);
Chris@3 238 else if (identifier == "method") m_method = Method(int(value + 0.5));
Chris@0 239 }
Chris@0 240
Chris@0 241 SimpleCepstrum::ProgramList
Chris@0 242 SimpleCepstrum::getPrograms() const
Chris@0 243 {
Chris@0 244 ProgramList list;
Chris@0 245 return list;
Chris@0 246 }
Chris@0 247
Chris@0 248 string
Chris@0 249 SimpleCepstrum::getCurrentProgram() const
Chris@0 250 {
Chris@0 251 return ""; // no programs
Chris@0 252 }
Chris@0 253
Chris@0 254 void
Chris@0 255 SimpleCepstrum::selectProgram(string name)
Chris@0 256 {
Chris@0 257 }
Chris@0 258
Chris@0 259 SimpleCepstrum::OutputList
Chris@0 260 SimpleCepstrum::getOutputDescriptors() const
Chris@0 261 {
Chris@0 262 OutputList outputs;
Chris@0 263
Chris@0 264 int n = 0;
Chris@0 265
Chris@0 266 OutputDescriptor d;
Chris@2 267
Chris@7 268 d.identifier = "raw_cepstral_peak";
Chris@7 269 d.name = "Frequency corresponding to raw cepstral peak";
Chris@24 270 d.description = "Return the frequency whose period corresponds to the quefrency with the maximum bin value within the specified range of the cepstrum";
Chris@6 271 d.unit = "Hz";
Chris@0 272 d.hasFixedBinCount = true;
Chris@0 273 d.binCount = 1;
Chris@0 274 d.hasKnownExtents = true;
Chris@0 275 d.minValue = m_fmin;
Chris@0 276 d.maxValue = m_fmax;
Chris@0 277 d.isQuantized = false;
Chris@0 278 d.sampleType = OutputDescriptor::OneSamplePerStep;
Chris@0 279 d.hasDuration = false;
Chris@5 280 m_pkOutput = n++;
Chris@0 281 outputs.push_back(d);
Chris@0 282
Chris@24 283 d.identifier = "interpolated_peak";
Chris@24 284 d.name = "Interpolated peak frequency";
Chris@40 285 d.description = "Return the frequency whose period corresponds to the quefrency with the maximum bin value within the specified range of the cepstrum, using parabolic interpolation to estimate the peak quefrency to finer than single bin resolution";
Chris@24 286 m_ipkOutput = n++;
Chris@24 287 outputs.push_back(d);
Chris@24 288
Chris@0 289 d.identifier = "variance";
Chris@0 290 d.name = "Variance of cepstral bins in range";
Chris@0 291 d.unit = "";
Chris@2 292 d.description = "Return the variance of bin values within the specified range of the cepstrum";
Chris@6 293 d.hasKnownExtents = false;
Chris@0 294 m_varOutput = n++;
Chris@0 295 outputs.push_back(d);
Chris@0 296
Chris@0 297 d.identifier = "peak";
Chris@8 298 d.name = "Value at peak";
Chris@0 299 d.unit = "";
Chris@2 300 d.description = "Return the value found in the maximum-valued bin within the specified range of the cepstrum";
Chris@0 301 m_pvOutput = n++;
Chris@0 302 outputs.push_back(d);
Chris@0 303
Chris@5 304 d.identifier = "peak_to_rms";
Chris@5 305 d.name = "Peak-to-RMS distance";
Chris@5 306 d.unit = "";
Chris@5 307 d.description = "Return the difference between maximum and root mean square bin values within the specified range of the cepstrum";
Chris@5 308 m_p2rOutput = n++;
Chris@5 309 outputs.push_back(d);
Chris@5 310
Chris@6 311 d.identifier = "peak_proportion";
Chris@7 312 d.name = "Energy around peak";
Chris@6 313 d.unit = "";
Chris@7 314 d.description = "Return the proportion of total energy that is found in the bins around the peak bin (as far as the nearest local minima), within the specified range of the cepstrum";
Chris@6 315 m_ppOutput = n++;
Chris@6 316 outputs.push_back(d);
Chris@6 317
Chris@20 318 d.identifier = "peak_to_second_peak";
Chris@27 319 d.name = "Peak to second-peak difference";
Chris@20 320 d.unit = "";
Chris@27 321 d.description = "Return the difference between the value found in the peak bin within the specified range of the cepstrum, and that found in the next highest peak";
Chris@20 322 m_pkoOutput = n++;
Chris@20 323 outputs.push_back(d);
Chris@20 324
Chris@6 325 d.identifier = "total";
Chris@6 326 d.name = "Total energy";
Chris@6 327 d.unit = "";
Chris@7 328 d.description = "Return the total energy found in all bins within the specified range of the cepstrum";
Chris@6 329 m_totOutput = n++;
Chris@6 330 outputs.push_back(d);
Chris@6 331
Chris@0 332 d.identifier = "cepstrum";
Chris@0 333 d.name = "Cepstrum";
Chris@0 334 d.unit = "";
Chris@2 335 d.description = "The unprocessed cepstrum bins within the specified range";
Chris@0 336
Chris@0 337 int from = int(m_inputSampleRate / m_fmax);
Chris@0 338 int to = int(m_inputSampleRate / m_fmin);
Chris@43 339 if (from >= (int)m_blockSize / 2) {
Chris@43 340 from = m_blockSize / 2 - 1;
Chris@43 341 }
Chris@0 342 if (to >= (int)m_blockSize / 2) {
Chris@0 343 to = m_blockSize / 2 - 1;
Chris@0 344 }
Chris@43 345 if (to < from) {
Chris@43 346 to = from;
Chris@43 347 }
Chris@0 348 d.binCount = to - from + 1;
Chris@0 349 for (int i = from; i <= to; ++i) {
Chris@0 350 float freq = m_inputSampleRate / i;
Chris@43 351 char buffer[50];
Chris@2 352 sprintf(buffer, "%.2f Hz", freq);
Chris@0 353 d.binNames.push_back(buffer);
Chris@0 354 }
Chris@0 355
Chris@0 356 d.hasKnownExtents = false;
Chris@0 357 m_cepOutput = n++;
Chris@0 358 outputs.push_back(d);
Chris@0 359
Chris@0 360 d.identifier = "am";
Chris@5 361 d.name = "Cepstrum bins relative to RMS";
Chris@5 362 d.description = "The cepstrum bins within the specified range, expressed as a value relative to the root mean square bin value in the range, with values below the RMS clamped to zero";
Chris@0 363 m_amOutput = n++;
Chris@0 364 outputs.push_back(d);
Chris@0 365
Chris@2 366 d.identifier = "env";
Chris@2 367 d.name = "Spectral envelope";
Chris@2 368 d.description = "Envelope calculated from the cepstral values below the specified minimum";
Chris@2 369 d.binCount = m_blockSize/2 + 1;
Chris@2 370 d.binNames.clear();
Chris@7 371 for (int i = 0; i < (int)d.binCount; ++i) {
Chris@2 372 float freq = (m_inputSampleRate / m_blockSize) * i;
Chris@43 373 char buffer[50];
Chris@2 374 sprintf(buffer, "%.2f Hz", freq);
Chris@2 375 d.binNames.push_back(buffer);
Chris@2 376 }
Chris@2 377 m_envOutput = n++;
Chris@2 378 outputs.push_back(d);
Chris@2 379
Chris@2 380 d.identifier = "es";
Chris@2 381 d.name = "Spectrum without envelope";
Chris@2 382 d.description = "Magnitude of spectrum values divided by calculated envelope values, to deconvolve the envelope";
Chris@2 383 m_esOutput = n++;
Chris@2 384 outputs.push_back(d);
Chris@2 385
Chris@0 386 return outputs;
Chris@0 387 }
Chris@0 388
Chris@0 389 bool
Chris@0 390 SimpleCepstrum::initialise(size_t channels, size_t stepSize, size_t blockSize)
Chris@0 391 {
Chris@0 392 if (channels < getMinChannelCount() ||
Chris@0 393 channels > getMaxChannelCount()) return false;
Chris@0 394
Chris@0 395 // std::cerr << "SimpleCepstrum::initialise: channels = " << channels
Chris@0 396 // << ", stepSize = " << stepSize << ", blockSize = " << blockSize
Chris@0 397 // << std::endl;
Chris@0 398
Chris@0 399 m_channels = channels;
Chris@0 400 m_stepSize = stepSize;
Chris@0 401 m_blockSize = blockSize;
Chris@0 402
Chris@5 403 m_binFrom = int(m_inputSampleRate / m_fmax);
Chris@43 404 m_binTo = int(m_inputSampleRate / m_fmin);
Chris@5 405
Chris@43 406 if (m_binFrom >= (int)m_blockSize / 2) {
Chris@43 407 m_binFrom = m_blockSize / 2 - 1;
Chris@43 408 }
Chris@7 409 if (m_binTo >= (int)m_blockSize / 2) {
Chris@5 410 m_binTo = m_blockSize / 2 - 1;
Chris@5 411 }
Chris@43 412 if (m_binTo < m_binFrom) {
Chris@43 413 m_binTo = m_binFrom;
Chris@43 414 }
Chris@5 415
Chris@5 416 m_bins = (m_binTo - m_binFrom) + 1;
Chris@5 417
Chris@5 418 m_history = new double *[m_histlen];
Chris@5 419 for (int i = 0; i < m_histlen; ++i) {
Chris@5 420 m_history[i] = new double[m_bins];
Chris@5 421 }
Chris@5 422
Chris@5 423 reset();
Chris@5 424
Chris@0 425 return true;
Chris@0 426 }
Chris@0 427
Chris@0 428 void
Chris@0 429 SimpleCepstrum::reset()
Chris@0 430 {
Chris@5 431 for (int i = 0; i < m_histlen; ++i) {
Chris@5 432 for (int j = 0; j < m_bins; ++j) {
Chris@5 433 m_history[i][j] = 0.0;
Chris@5 434 }
Chris@5 435 }
Chris@5 436 }
Chris@5 437
Chris@5 438 void
Chris@5 439 SimpleCepstrum::filter(const double *cep, double *result)
Chris@5 440 {
Chris@5 441 int hix = m_histlen - 1; // current history index
Chris@5 442
Chris@5 443 // roll back the history
Chris@5 444 if (m_histlen > 1) {
Chris@5 445 double *oldest = m_history[0];
Chris@5 446 for (int i = 1; i < m_histlen; ++i) {
Chris@5 447 m_history[i-1] = m_history[i];
Chris@5 448 }
Chris@5 449 // and stick this back in the newest spot, to recycle
Chris@5 450 m_history[hix] = oldest;
Chris@5 451 }
Chris@5 452
Chris@5 453 for (int i = 0; i < m_bins; ++i) {
Chris@10 454 double v = 0;
Chris@10 455 int n = 0;
Chris@10 456 // average according to the vertical filter length
Chris@10 457 for (int j = -m_vflen/2; j <= m_vflen/2; ++j) {
Chris@10 458 int ix = i + m_binFrom + j;
Chris@39 459 if (ix >= 0 && ix < (int)m_blockSize) {
Chris@10 460 v += cep[ix];
Chris@10 461 ++n;
Chris@10 462 }
Chris@10 463 }
Chris@10 464 m_history[hix][i] = v / n;
Chris@5 465 }
Chris@5 466
Chris@5 467 for (int i = 0; i < m_bins; ++i) {
Chris@5 468 double mean = 0.0;
Chris@5 469 for (int j = 0; j < m_histlen; ++j) {
Chris@5 470 mean += m_history[j][i];
Chris@5 471 }
Chris@5 472 mean /= m_histlen;
Chris@5 473 result[i] = mean;
Chris@5 474 }
Chris@5 475 }
Chris@24 476
Chris@24 477 double
Chris@24 478 SimpleCepstrum::findInterpolatedPeak(const double *in, int maxbin)
Chris@24 479 {
Chris@40 480 // after jos,
Chris@40 481 // https://ccrma.stanford.edu/~jos/sasp/Quadratic_Interpolation_Spectral_Peaks.html
Chris@40 482
Chris@40 483 if (maxbin < 1 || maxbin > m_bins - 2) {
Chris@24 484 return maxbin;
Chris@24 485 }
Chris@24 486
Chris@40 487 double alpha = in[maxbin-1];
Chris@40 488 double beta = in[maxbin];
Chris@40 489 double gamma = in[maxbin+1];
Chris@24 490
Chris@40 491 double denom = (alpha - 2*beta + gamma);
Chris@24 492
Chris@40 493 if (denom == 0) {
Chris@40 494 // flat
Chris@40 495 return maxbin;
Chris@24 496 }
Chris@24 497
Chris@40 498 double p = ((alpha - gamma) / denom) / 2.0;
Chris@24 499
Chris@40 500 return double(maxbin) + p;
Chris@24 501 }
Chris@5 502
Chris@5 503 void
Chris@5 504 SimpleCepstrum::addStatisticalOutputs(FeatureSet &fs, const double *data)
Chris@5 505 {
Chris@5 506 int n = m_bins;
Chris@5 507
Chris@6 508 double maxval = 0.0;
Chris@5 509 int maxbin = 0;
Chris@5 510
Chris@5 511 for (int i = 0; i < n; ++i) {
Chris@5 512 if (data[i] > maxval) {
Chris@5 513 maxval = data[i];
Chris@6 514 maxbin = i;
Chris@5 515 }
Chris@5 516 }
Chris@5 517
Chris@20 518 double nextPeakVal = 0.0;
Chris@20 519
Chris@20 520 for (int i = 1; i+1 < n; ++i) {
Chris@20 521 if (data[i] > data[i-1] &&
Chris@20 522 data[i] > data[i+1] &&
Chris@20 523 i != maxbin &&
Chris@20 524 data[i] > nextPeakVal) {
Chris@20 525 nextPeakVal = data[i];
Chris@20 526 }
Chris@20 527 }
Chris@20 528
Chris@5 529 Feature rf;
Chris@24 530 Feature irf;
Chris@6 531 if (maxval > 0.0) {
Chris@6 532 rf.values.push_back(m_inputSampleRate / (maxbin + m_binFrom));
Chris@24 533 double cimax = findInterpolatedPeak(data, maxbin);
Chris@24 534 irf.values.push_back(m_inputSampleRate / (cimax + m_binFrom));
Chris@5 535 } else {
Chris@5 536 rf.values.push_back(0);
Chris@24 537 irf.values.push_back(0);
Chris@5 538 }
Chris@5 539 fs[m_pkOutput].push_back(rf);
Chris@24 540 fs[m_ipkOutput].push_back(irf);
Chris@5 541
Chris@6 542 double total = 0;
Chris@5 543 for (int i = 0; i < n; ++i) {
Chris@6 544 total += data[i];
Chris@5 545 }
Chris@5 546
Chris@6 547 Feature tot;
Chris@6 548 tot.values.push_back(total);
Chris@6 549 fs[m_totOutput].push_back(tot);
Chris@6 550
Chris@6 551 double mean = total / n;
Chris@6 552
Chris@6 553 double totsqr = 0;
Chris@8 554 double abstot = 0;
Chris@5 555 for (int i = 0; i < n; ++i) {
Chris@6 556 totsqr += data[i] * data[i];
Chris@8 557 abstot += fabs(data[i]);
Chris@5 558 }
Chris@6 559 double rms = sqrt(totsqr / n);
Chris@5 560
Chris@5 561 double variance = 0;
Chris@5 562 for (int i = 0; i < n; ++i) {
Chris@5 563 double dev = fabs(data[i] - mean);
Chris@5 564 variance += dev * dev;
Chris@5 565 }
Chris@5 566 variance /= n;
Chris@5 567
Chris@6 568 double aroundPeak = 0.0;
Chris@6 569 double peakProportion = 0.0;
Chris@6 570 if (maxval > 0.0) {
Chris@7 571 aroundPeak += fabs(maxval);
Chris@6 572 int i = maxbin - 1;
Chris@6 573 while (i > 0 && data[i] <= data[i+1]) {
Chris@7 574 aroundPeak += fabs(data[i]);
Chris@6 575 --i;
Chris@6 576 }
Chris@6 577 i = maxbin + 1;
Chris@6 578 while (i < n && data[i] <= data[i-1]) {
Chris@7 579 aroundPeak += fabs(data[i]);
Chris@6 580 ++i;
Chris@6 581 }
Chris@6 582 }
Chris@8 583 peakProportion = aroundPeak / abstot;
Chris@6 584 Feature pp;
Chris@6 585 pp.values.push_back(peakProportion);
Chris@6 586 fs[m_ppOutput].push_back(pp);
Chris@6 587
Chris@5 588 Feature vf;
Chris@5 589 vf.values.push_back(variance);
Chris@5 590 fs[m_varOutput].push_back(vf);
Chris@5 591
Chris@5 592 Feature pr;
Chris@5 593 pr.values.push_back(maxval - rms);
Chris@5 594 fs[m_p2rOutput].push_back(pr);
Chris@5 595
Chris@5 596 Feature pv;
Chris@5 597 pv.values.push_back(maxval);
Chris@5 598 fs[m_pvOutput].push_back(pv);
Chris@5 599
Chris@20 600 Feature pko;
Chris@20 601 if (nextPeakVal != 0.0) {
Chris@27 602 pko.values.push_back(maxval - nextPeakVal);
Chris@20 603 } else {
Chris@20 604 pko.values.push_back(0.0);
Chris@20 605 }
Chris@20 606 fs[m_pkoOutput].push_back(pko);
Chris@20 607
Chris@5 608 Feature am;
Chris@5 609 for (int i = 0; i < n; ++i) {
Chris@5 610 if (data[i] < rms) am.values.push_back(0);
Chris@5 611 else am.values.push_back(data[i] - rms);
Chris@5 612 }
Chris@5 613 fs[m_amOutput].push_back(am);
Chris@5 614 }
Chris@5 615
Chris@5 616 void
Chris@5 617 SimpleCepstrum::addEnvelopeOutputs(FeatureSet &fs, const float *const *inputBuffers, const double *cep)
Chris@5 618 {
Chris@5 619 // Wipe the higher cepstral bins in order to calculate the
Chris@5 620 // envelope. This calculation uses the raw cepstrum, not the
Chris@5 621 // filtered values (because only values "in frequency range" are
Chris@5 622 // filtered).
Chris@5 623 int bs = m_blockSize;
Chris@5 624 int hs = m_blockSize/2 + 1;
Chris@5 625
Chris@5 626 double *ecep = new double[bs];
Chris@5 627 for (int i = 0; i < m_binFrom; ++i) {
Chris@5 628 ecep[i] = cep[i] / bs;
Chris@5 629 }
Chris@5 630 for (int i = m_binFrom; i < bs; ++i) {
Chris@5 631 ecep[i] = 0;
Chris@5 632 }
Chris@5 633 ecep[0] /= 2;
Chris@43 634 if (m_binFrom > 0) {
Chris@43 635 ecep[m_binFrom-1] /= 2;
Chris@43 636 }
Chris@5 637
Chris@5 638 double *env = new double[bs];
Chris@5 639 double *io = new double[bs];
Chris@7 640
Chris@7 641 //!!! This is only right if the previous transform was an inverse one!
Chris@33 642 Vamp::FFT::forward(bs, ecep, 0, env, io);
Chris@5 643
Chris@5 644 for (int i = 0; i < hs; ++i) {
Chris@5 645 env[i] = exp(env[i]);
Chris@5 646 }
Chris@5 647 Feature envf;
Chris@5 648 for (int i = 0; i < hs; ++i) {
Chris@5 649 envf.values.push_back(env[i]);
Chris@5 650 }
Chris@5 651 fs[m_envOutput].push_back(envf);
Chris@5 652
Chris@5 653 Feature es;
Chris@5 654 for (int i = 0; i < hs; ++i) {
Chris@5 655 double re = inputBuffers[0][i*2 ] / env[i];
Chris@5 656 double im = inputBuffers[0][i*2+1] / env[i];
Chris@5 657 double mag = sqrt(re*re + im*im);
Chris@5 658 es.values.push_back(mag);
Chris@5 659 }
Chris@5 660 fs[m_esOutput].push_back(es);
Chris@5 661
Chris@5 662 delete[] env;
Chris@5 663 delete[] ecep;
Chris@5 664 delete[] io;
Chris@0 665 }
Chris@0 666
Chris@0 667 SimpleCepstrum::FeatureSet
Chris@0 668 SimpleCepstrum::process(const float *const *inputBuffers, Vamp::RealTime timestamp)
Chris@0 669 {
Chris@1 670 FeatureSet fs;
Chris@1 671
Chris@0 672 int bs = m_blockSize;
Chris@0 673 int hs = m_blockSize/2 + 1;
Chris@0 674
Chris@5 675 double *rawcep = new double[bs];
Chris@3 676 double *io = new double[bs];
Chris@3 677
Chris@4 678 if (m_method != InverseComplex) {
Chris@3 679
Chris@4 680 double *logmag = new double[bs];
Chris@4 681
Chris@4 682 for (int i = 0; i < hs; ++i) {
Chris@3 683
Chris@4 684 double power =
Chris@4 685 inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] +
Chris@4 686 inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1];
Chris@5 687 double mag = sqrt(power);
Chris@3 688
Chris@5 689 double lm = log(mag + 0.00000001);
Chris@4 690
Chris@4 691 switch (m_method) {
Chris@4 692 case InverseSymmetric:
Chris@4 693 logmag[i] = lm;
Chris@4 694 if (i > 0) logmag[bs - i] = lm;
Chris@4 695 break;
Chris@4 696 case InverseAsymmetric:
Chris@4 697 logmag[i] = lm;
Chris@4 698 if (i > 0) logmag[bs - i] = 0;
Chris@4 699 break;
Chris@4 700 default:
Chris@4 701 logmag[bs/2 + i - 1] = lm;
Chris@4 702 if (i < hs-1) {
Chris@4 703 logmag[bs/2 - i - 1] = lm;
Chris@4 704 }
Chris@4 705 break;
Chris@3 706 }
Chris@3 707 }
Chris@4 708
Chris@4 709 if (m_method == InverseSymmetric ||
Chris@4 710 m_method == InverseAsymmetric) {
Chris@4 711
Chris@33 712 Vamp::FFT::inverse(bs, logmag, 0, rawcep, io);
Chris@4 713
Chris@4 714 } else {
Chris@4 715
Chris@33 716 Vamp::FFT::forward(bs, logmag, 0, rawcep, io);
Chris@4 717
Chris@4 718 if (m_method == ForwardDifference) {
Chris@4 719 for (int i = 0; i < hs; ++i) {
Chris@5 720 rawcep[i] = fabs(io[i]) - fabs(rawcep[i]);
Chris@4 721 }
Chris@4 722 } else {
Chris@4 723 for (int i = 0; i < hs; ++i) {
Chris@5 724 rawcep[i] = sqrt(rawcep[i]*rawcep[i] + io[i]*io[i]);
Chris@4 725 }
Chris@4 726 }
Chris@4 727 }
Chris@4 728
Chris@4 729 delete[] logmag;
Chris@4 730
Chris@4 731 } else { // InverseComplex
Chris@4 732
Chris@4 733 double *ri = new double[bs];
Chris@4 734 double *ii = new double[bs];
Chris@4 735
Chris@4 736 for (int i = 0; i < hs; ++i) {
Chris@4 737 double re = inputBuffers[0][i*2];
Chris@4 738 double im = inputBuffers[0][i*2+1];
Chris@4 739 std::complex<double> c(re, im);
Chris@4 740 std::complex<double> clog = std::log(c);
Chris@4 741 ri[i] = clog.real();
Chris@4 742 ii[i] = clog.imag();
Chris@4 743 if (i > 0) {
Chris@4 744 ri[bs - i] = ri[i];
Chris@4 745 ii[bs - i] = -ii[i];
Chris@4 746 }
Chris@4 747 }
Chris@4 748
Chris@33 749 Vamp::FFT::inverse(bs, ri, ii, rawcep, io);
Chris@4 750
Chris@4 751 delete[] ri;
Chris@4 752 delete[] ii;
Chris@3 753 }
Chris@0 754
Chris@0 755 if (m_clamp) {
Chris@0 756 for (int i = 0; i < bs; ++i) {
Chris@5 757 if (rawcep[i] < 0) rawcep[i] = 0;
Chris@0 758 }
Chris@0 759 }
Chris@0 760
Chris@5 761 delete[] io;
Chris@0 762
Chris@5 763 double *latest = new double[m_bins];
Chris@5 764 filter(rawcep, latest);
Chris@5 765
Chris@5 766 int n = m_bins;
Chris@0 767
Chris@0 768 Feature cf;
Chris@5 769 for (int i = 0; i < n; ++i) {
Chris@5 770 cf.values.push_back(latest[i]);
Chris@0 771 }
Chris@0 772 fs[m_cepOutput].push_back(cf);
Chris@0 773
Chris@5 774 addStatisticalOutputs(fs, latest);
Chris@0 775
Chris@5 776 addEnvelopeOutputs(fs, inputBuffers, rawcep);
Chris@0 777
Chris@5 778 delete[] latest;
Chris@7 779 delete[] rawcep;
Chris@0 780
Chris@0 781 return fs;
Chris@0 782 }
Chris@0 783
Chris@0 784 SimpleCepstrum::FeatureSet
Chris@0 785 SimpleCepstrum::getRemainingFeatures()
Chris@0 786 {
Chris@0 787 FeatureSet fs;
Chris@0 788 return fs;
Chris@0 789 }