annotate SimpleCepstrum.cpp @ 39:59701cbc4b93

Remove the pitch-tracker; it's now in a separate project (cepstral-pitchtracker)
author Chris Cannam
date Thu, 19 Jul 2012 17:51:57 +0100
parents c70ebf24b419
children d6acf12f0a8e
rev   line source
Chris@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@7 2 /*
Chris@38 3 This file is Copyright (c) 2012 Chris Cannam
Chris@38 4
Chris@7 5 Permission is hereby granted, free of charge, to any person
Chris@7 6 obtaining a copy of this software and associated documentation
Chris@7 7 files (the "Software"), to deal in the Software without
Chris@7 8 restriction, including without limitation the rights to use, copy,
Chris@7 9 modify, merge, publish, distribute, sublicense, and/or sell copies
Chris@7 10 of the Software, and to permit persons to whom the Software is
Chris@7 11 furnished to do so, subject to the following conditions:
Chris@7 12
Chris@7 13 The above copyright notice and this permission notice shall be
Chris@7 14 included in all copies or substantial portions of the Software.
Chris@7 15
Chris@7 16 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
Chris@7 17 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
Chris@7 18 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
Chris@7 19 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
Chris@7 20 ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
Chris@7 21 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
Chris@7 22 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Chris@7 23 */
Chris@0 24
Chris@0 25 #include "SimpleCepstrum.h"
Chris@0 26
Chris@33 27 #include "vamp-sdk/FFT.h"
Chris@33 28
Chris@0 29 #include <vector>
Chris@0 30 #include <algorithm>
Chris@0 31
Chris@0 32 #include <cstdio>
Chris@0 33 #include <cmath>
Chris@4 34 #include <complex>
Chris@0 35
Chris@33 36 #if ( VAMP_SDK_MAJOR_VERSION < 2 || ( VAMP_SDK_MAJOR_VERSION == 2 && VAMP_SDK_MINOR_VERSION < 4 ) )
Chris@33 37 #error Vamp SDK version 2.4 or newer required
Chris@33 38 #endif
Chris@33 39
Chris@0 40 using std::string;
Chris@0 41
Chris@0 42 SimpleCepstrum::SimpleCepstrum(float inputSampleRate) :
Chris@0 43 Plugin(inputSampleRate),
Chris@0 44 m_channels(0),
Chris@0 45 m_stepSize(256),
Chris@0 46 m_blockSize(1024),
Chris@0 47 m_fmin(50),
Chris@0 48 m_fmax(1000),
Chris@10 49 m_histlen(1),
Chris@10 50 m_vflen(1),
Chris@3 51 m_clamp(false),
Chris@5 52 m_method(InverseSymmetric),
Chris@5 53 m_binFrom(0),
Chris@5 54 m_binTo(0),
Chris@5 55 m_bins(0),
Chris@5 56 m_history(0)
Chris@0 57 {
Chris@0 58 }
Chris@0 59
Chris@0 60 SimpleCepstrum::~SimpleCepstrum()
Chris@0 61 {
Chris@5 62 if (m_history) {
Chris@5 63 for (int i = 0; i < m_histlen; ++i) {
Chris@5 64 delete[] m_history[i];
Chris@5 65 }
Chris@5 66 delete[] m_history;
Chris@5 67 }
Chris@0 68 }
Chris@0 69
Chris@0 70 string
Chris@0 71 SimpleCepstrum::getIdentifier() const
Chris@0 72 {
Chris@0 73 return "simple-cepstrum";
Chris@0 74 }
Chris@0 75
Chris@0 76 string
Chris@0 77 SimpleCepstrum::getName() const
Chris@0 78 {
Chris@0 79 return "Simple Cepstrum";
Chris@0 80 }
Chris@0 81
Chris@0 82 string
Chris@0 83 SimpleCepstrum::getDescription() const
Chris@0 84 {
Chris@2 85 return "Return simple cepstral data from DFT bins. This plugin is intended for casual inspection of cepstral data. It returns a lot of different sorts of data and is quite slow; it's not a good way to extract a single feature rapidly.";
Chris@0 86 }
Chris@0 87
Chris@0 88 string
Chris@0 89 SimpleCepstrum::getMaker() const
Chris@0 90 {
Chris@7 91 return "Chris Cannam";
Chris@0 92 }
Chris@0 93
Chris@0 94 int
Chris@0 95 SimpleCepstrum::getPluginVersion() const
Chris@0 96 {
Chris@0 97 // Increment this each time you release a version that behaves
Chris@0 98 // differently from the previous one
Chris@0 99 return 1;
Chris@0 100 }
Chris@0 101
Chris@0 102 string
Chris@0 103 SimpleCepstrum::getCopyright() const
Chris@0 104 {
Chris@7 105 return "Freely redistributable (BSD license)";
Chris@0 106 }
Chris@0 107
Chris@0 108 SimpleCepstrum::InputDomain
Chris@0 109 SimpleCepstrum::getInputDomain() const
Chris@0 110 {
Chris@0 111 return FrequencyDomain;
Chris@0 112 }
Chris@0 113
Chris@0 114 size_t
Chris@0 115 SimpleCepstrum::getPreferredBlockSize() const
Chris@0 116 {
Chris@0 117 return 1024;
Chris@0 118 }
Chris@0 119
Chris@0 120 size_t
Chris@0 121 SimpleCepstrum::getPreferredStepSize() const
Chris@0 122 {
Chris@0 123 return 256;
Chris@0 124 }
Chris@0 125
Chris@0 126 size_t
Chris@0 127 SimpleCepstrum::getMinChannelCount() const
Chris@0 128 {
Chris@0 129 return 1;
Chris@0 130 }
Chris@0 131
Chris@0 132 size_t
Chris@0 133 SimpleCepstrum::getMaxChannelCount() const
Chris@0 134 {
Chris@0 135 return 1;
Chris@0 136 }
Chris@0 137
Chris@0 138 SimpleCepstrum::ParameterList
Chris@0 139 SimpleCepstrum::getParameterDescriptors() const
Chris@0 140 {
Chris@0 141 ParameterList list;
Chris@0 142
Chris@0 143 ParameterDescriptor d;
Chris@0 144
Chris@0 145 d.identifier = "fmin";
Chris@0 146 d.name = "Minimum frequency";
Chris@0 147 d.description = "";
Chris@0 148 d.unit = "Hz";
Chris@0 149 d.minValue = m_inputSampleRate / m_blockSize;
Chris@0 150 d.maxValue = m_inputSampleRate / 2;
Chris@0 151 d.defaultValue = 50;
Chris@0 152 d.isQuantized = false;
Chris@0 153 list.push_back(d);
Chris@0 154
Chris@0 155 d.identifier = "fmax";
Chris@0 156 d.name = "Maximum frequency";
Chris@0 157 d.description = "";
Chris@0 158 d.unit = "Hz";
Chris@0 159 d.minValue = m_inputSampleRate / m_blockSize;
Chris@0 160 d.maxValue = m_inputSampleRate / 2;
Chris@0 161 d.defaultValue = 1000;
Chris@0 162 d.isQuantized = false;
Chris@0 163 list.push_back(d);
Chris@0 164
Chris@5 165 d.identifier = "histlen";
Chris@5 166 d.name = "Mean filter history length";
Chris@5 167 d.description = "";
Chris@5 168 d.unit = "";
Chris@5 169 d.minValue = 1;
Chris@5 170 d.maxValue = 10;
Chris@10 171 d.defaultValue = 1;
Chris@5 172 d.isQuantized = true;
Chris@5 173 d.quantizeStep = 1;
Chris@5 174 list.push_back(d);
Chris@5 175
Chris@10 176 d.identifier = "vflen";
Chris@10 177 d.name = "Vertical filter length";
Chris@10 178 d.description = "";
Chris@10 179 d.unit = "";
Chris@10 180 d.minValue = 1;
Chris@10 181 d.maxValue = 11;
Chris@10 182 d.defaultValue = 1;
Chris@10 183 d.isQuantized = true;
Chris@10 184 d.quantizeStep = 2;
Chris@10 185 list.push_back(d);
Chris@10 186
Chris@3 187 d.identifier = "method";
Chris@3 188 d.name = "Cepstrum transform method";
Chris@3 189 d.unit = "";
Chris@3 190 d.minValue = 0;
Chris@5 191 d.maxValue = 4;
Chris@3 192 d.defaultValue = 0;
Chris@3 193 d.isQuantized = true;
Chris@3 194 d.quantizeStep = 1;
Chris@3 195 d.valueNames.push_back("Inverse symmetric");
Chris@3 196 d.valueNames.push_back("Inverse asymmetric");
Chris@4 197 d.valueNames.push_back("Inverse complex");
Chris@3 198 d.valueNames.push_back("Forward magnitude");
Chris@3 199 d.valueNames.push_back("Forward difference");
Chris@3 200 list.push_back(d);
Chris@3 201
Chris@10 202 d.identifier = "clamp";
Chris@10 203 d.name = "Clamp negative values in cepstrum at zero";
Chris@10 204 d.unit = "";
Chris@10 205 d.minValue = 0;
Chris@10 206 d.maxValue = 1;
Chris@10 207 d.defaultValue = 0;
Chris@10 208 d.isQuantized = true;
Chris@10 209 d.quantizeStep = 1;
Chris@10 210 d.valueNames.clear();
Chris@10 211 list.push_back(d);
Chris@10 212
Chris@0 213 return list;
Chris@0 214 }
Chris@0 215
Chris@0 216 float
Chris@0 217 SimpleCepstrum::getParameter(string identifier) const
Chris@0 218 {
Chris@0 219 if (identifier == "fmin") return m_fmin;
Chris@0 220 else if (identifier == "fmax") return m_fmax;
Chris@5 221 else if (identifier == "histlen") return m_histlen;
Chris@10 222 else if (identifier == "vflen") return m_vflen;
Chris@10 223 else if (identifier == "clamp") return (m_clamp ? 1 : 0);
Chris@3 224 else if (identifier == "method") return (int)m_method;
Chris@0 225 else return 0.f;
Chris@0 226 }
Chris@0 227
Chris@0 228 void
Chris@0 229 SimpleCepstrum::setParameter(string identifier, float value)
Chris@0 230 {
Chris@0 231 if (identifier == "fmin") m_fmin = value;
Chris@0 232 else if (identifier == "fmax") m_fmax = value;
Chris@5 233 else if (identifier == "histlen") m_histlen = value;
Chris@10 234 else if (identifier == "vflen") m_vflen = value;
Chris@10 235 else if (identifier == "clamp") m_clamp = (value > 0.5);
Chris@3 236 else if (identifier == "method") m_method = Method(int(value + 0.5));
Chris@0 237 }
Chris@0 238
Chris@0 239 SimpleCepstrum::ProgramList
Chris@0 240 SimpleCepstrum::getPrograms() const
Chris@0 241 {
Chris@0 242 ProgramList list;
Chris@0 243 return list;
Chris@0 244 }
Chris@0 245
Chris@0 246 string
Chris@0 247 SimpleCepstrum::getCurrentProgram() const
Chris@0 248 {
Chris@0 249 return ""; // no programs
Chris@0 250 }
Chris@0 251
Chris@0 252 void
Chris@0 253 SimpleCepstrum::selectProgram(string name)
Chris@0 254 {
Chris@0 255 }
Chris@0 256
Chris@0 257 SimpleCepstrum::OutputList
Chris@0 258 SimpleCepstrum::getOutputDescriptors() const
Chris@0 259 {
Chris@0 260 OutputList outputs;
Chris@0 261
Chris@0 262 int n = 0;
Chris@0 263
Chris@0 264 OutputDescriptor d;
Chris@2 265
Chris@7 266 d.identifier = "raw_cepstral_peak";
Chris@7 267 d.name = "Frequency corresponding to raw cepstral peak";
Chris@24 268 d.description = "Return the frequency whose period corresponds to the quefrency with the maximum bin value within the specified range of the cepstrum";
Chris@6 269 d.unit = "Hz";
Chris@0 270 d.hasFixedBinCount = true;
Chris@0 271 d.binCount = 1;
Chris@0 272 d.hasKnownExtents = true;
Chris@0 273 d.minValue = m_fmin;
Chris@0 274 d.maxValue = m_fmax;
Chris@0 275 d.isQuantized = false;
Chris@0 276 d.sampleType = OutputDescriptor::OneSamplePerStep;
Chris@0 277 d.hasDuration = false;
Chris@5 278 m_pkOutput = n++;
Chris@0 279 outputs.push_back(d);
Chris@0 280
Chris@24 281 d.identifier = "interpolated_peak";
Chris@24 282 d.name = "Interpolated peak frequency";
Chris@24 283 d.description = "Return the frequency whose period corresponds to the quefrency with the maximum bin value within the specified range of the cepstrum, using cubic interpolation to estimate the peak quefrency to finer than single bin resolution";
Chris@24 284 m_ipkOutput = n++;
Chris@24 285 outputs.push_back(d);
Chris@24 286
Chris@0 287 d.identifier = "variance";
Chris@0 288 d.name = "Variance of cepstral bins in range";
Chris@0 289 d.unit = "";
Chris@2 290 d.description = "Return the variance of bin values within the specified range of the cepstrum";
Chris@6 291 d.hasKnownExtents = false;
Chris@0 292 m_varOutput = n++;
Chris@0 293 outputs.push_back(d);
Chris@0 294
Chris@0 295 d.identifier = "peak";
Chris@8 296 d.name = "Value at peak";
Chris@0 297 d.unit = "";
Chris@2 298 d.description = "Return the value found in the maximum-valued bin within the specified range of the cepstrum";
Chris@0 299 m_pvOutput = n++;
Chris@0 300 outputs.push_back(d);
Chris@0 301
Chris@5 302 d.identifier = "peak_to_rms";
Chris@5 303 d.name = "Peak-to-RMS distance";
Chris@5 304 d.unit = "";
Chris@5 305 d.description = "Return the difference between maximum and root mean square bin values within the specified range of the cepstrum";
Chris@5 306 m_p2rOutput = n++;
Chris@5 307 outputs.push_back(d);
Chris@5 308
Chris@6 309 d.identifier = "peak_proportion";
Chris@7 310 d.name = "Energy around peak";
Chris@6 311 d.unit = "";
Chris@7 312 d.description = "Return the proportion of total energy that is found in the bins around the peak bin (as far as the nearest local minima), within the specified range of the cepstrum";
Chris@6 313 m_ppOutput = n++;
Chris@6 314 outputs.push_back(d);
Chris@6 315
Chris@20 316 d.identifier = "peak_to_second_peak";
Chris@27 317 d.name = "Peak to second-peak difference";
Chris@20 318 d.unit = "";
Chris@27 319 d.description = "Return the difference between the value found in the peak bin within the specified range of the cepstrum, and that found in the next highest peak";
Chris@20 320 m_pkoOutput = n++;
Chris@20 321 outputs.push_back(d);
Chris@20 322
Chris@6 323 d.identifier = "total";
Chris@6 324 d.name = "Total energy";
Chris@6 325 d.unit = "";
Chris@7 326 d.description = "Return the total energy found in all bins within the specified range of the cepstrum";
Chris@6 327 m_totOutput = n++;
Chris@6 328 outputs.push_back(d);
Chris@6 329
Chris@0 330 d.identifier = "cepstrum";
Chris@0 331 d.name = "Cepstrum";
Chris@0 332 d.unit = "";
Chris@2 333 d.description = "The unprocessed cepstrum bins within the specified range";
Chris@0 334
Chris@0 335 int from = int(m_inputSampleRate / m_fmax);
Chris@0 336 int to = int(m_inputSampleRate / m_fmin);
Chris@0 337 if (to >= (int)m_blockSize / 2) {
Chris@0 338 to = m_blockSize / 2 - 1;
Chris@0 339 }
Chris@0 340 d.binCount = to - from + 1;
Chris@0 341 for (int i = from; i <= to; ++i) {
Chris@0 342 float freq = m_inputSampleRate / i;
Chris@5 343 char buffer[20];
Chris@2 344 sprintf(buffer, "%.2f Hz", freq);
Chris@0 345 d.binNames.push_back(buffer);
Chris@0 346 }
Chris@0 347
Chris@0 348 d.hasKnownExtents = false;
Chris@0 349 m_cepOutput = n++;
Chris@0 350 outputs.push_back(d);
Chris@0 351
Chris@0 352 d.identifier = "am";
Chris@5 353 d.name = "Cepstrum bins relative to RMS";
Chris@5 354 d.description = "The cepstrum bins within the specified range, expressed as a value relative to the root mean square bin value in the range, with values below the RMS clamped to zero";
Chris@0 355 m_amOutput = n++;
Chris@0 356 outputs.push_back(d);
Chris@0 357
Chris@2 358 d.identifier = "env";
Chris@2 359 d.name = "Spectral envelope";
Chris@2 360 d.description = "Envelope calculated from the cepstral values below the specified minimum";
Chris@2 361 d.binCount = m_blockSize/2 + 1;
Chris@2 362 d.binNames.clear();
Chris@7 363 for (int i = 0; i < (int)d.binCount; ++i) {
Chris@2 364 float freq = (m_inputSampleRate / m_blockSize) * i;
Chris@5 365 char buffer[20];
Chris@2 366 sprintf(buffer, "%.2f Hz", freq);
Chris@2 367 d.binNames.push_back(buffer);
Chris@2 368 }
Chris@2 369 m_envOutput = n++;
Chris@2 370 outputs.push_back(d);
Chris@2 371
Chris@2 372 d.identifier = "es";
Chris@2 373 d.name = "Spectrum without envelope";
Chris@2 374 d.description = "Magnitude of spectrum values divided by calculated envelope values, to deconvolve the envelope";
Chris@2 375 m_esOutput = n++;
Chris@2 376 outputs.push_back(d);
Chris@2 377
Chris@0 378 return outputs;
Chris@0 379 }
Chris@0 380
Chris@0 381 bool
Chris@0 382 SimpleCepstrum::initialise(size_t channels, size_t stepSize, size_t blockSize)
Chris@0 383 {
Chris@0 384 if (channels < getMinChannelCount() ||
Chris@0 385 channels > getMaxChannelCount()) return false;
Chris@0 386
Chris@0 387 // std::cerr << "SimpleCepstrum::initialise: channels = " << channels
Chris@0 388 // << ", stepSize = " << stepSize << ", blockSize = " << blockSize
Chris@0 389 // << std::endl;
Chris@0 390
Chris@0 391 m_channels = channels;
Chris@0 392 m_stepSize = stepSize;
Chris@0 393 m_blockSize = blockSize;
Chris@0 394
Chris@5 395 m_binFrom = int(m_inputSampleRate / m_fmax);
Chris@5 396 m_binTo = int(m_inputSampleRate / m_fmin);
Chris@5 397
Chris@7 398 if (m_binTo >= (int)m_blockSize / 2) {
Chris@5 399 m_binTo = m_blockSize / 2 - 1;
Chris@5 400 }
Chris@5 401
Chris@5 402 m_bins = (m_binTo - m_binFrom) + 1;
Chris@5 403
Chris@5 404 m_history = new double *[m_histlen];
Chris@5 405 for (int i = 0; i < m_histlen; ++i) {
Chris@5 406 m_history[i] = new double[m_bins];
Chris@5 407 }
Chris@5 408
Chris@5 409 reset();
Chris@5 410
Chris@0 411 return true;
Chris@0 412 }
Chris@0 413
Chris@0 414 void
Chris@0 415 SimpleCepstrum::reset()
Chris@0 416 {
Chris@5 417 for (int i = 0; i < m_histlen; ++i) {
Chris@5 418 for (int j = 0; j < m_bins; ++j) {
Chris@5 419 m_history[i][j] = 0.0;
Chris@5 420 }
Chris@5 421 }
Chris@5 422 }
Chris@5 423
Chris@5 424 void
Chris@5 425 SimpleCepstrum::filter(const double *cep, double *result)
Chris@5 426 {
Chris@5 427 int hix = m_histlen - 1; // current history index
Chris@5 428
Chris@5 429 // roll back the history
Chris@5 430 if (m_histlen > 1) {
Chris@5 431 double *oldest = m_history[0];
Chris@5 432 for (int i = 1; i < m_histlen; ++i) {
Chris@5 433 m_history[i-1] = m_history[i];
Chris@5 434 }
Chris@5 435 // and stick this back in the newest spot, to recycle
Chris@5 436 m_history[hix] = oldest;
Chris@5 437 }
Chris@5 438
Chris@5 439 for (int i = 0; i < m_bins; ++i) {
Chris@10 440 double v = 0;
Chris@10 441 int n = 0;
Chris@10 442 // average according to the vertical filter length
Chris@10 443 for (int j = -m_vflen/2; j <= m_vflen/2; ++j) {
Chris@10 444 int ix = i + m_binFrom + j;
Chris@39 445 if (ix >= 0 && ix < (int)m_blockSize) {
Chris@10 446 v += cep[ix];
Chris@10 447 ++n;
Chris@10 448 }
Chris@10 449 }
Chris@10 450 m_history[hix][i] = v / n;
Chris@5 451 }
Chris@5 452
Chris@5 453 for (int i = 0; i < m_bins; ++i) {
Chris@5 454 double mean = 0.0;
Chris@5 455 for (int j = 0; j < m_histlen; ++j) {
Chris@5 456 mean += m_history[j][i];
Chris@5 457 }
Chris@5 458 mean /= m_histlen;
Chris@5 459 result[i] = mean;
Chris@5 460 }
Chris@5 461 }
Chris@24 462
Chris@24 463 double
Chris@24 464 SimpleCepstrum::cubicInterpolate(const double y[4], double x)
Chris@24 465 {
Chris@24 466 double a0 = y[3] - y[2] - y[0] + y[1];
Chris@24 467 double a1 = y[0] - y[1] - a0;
Chris@24 468 double a2 = y[2] - y[0];
Chris@24 469 double a3 = y[1];
Chris@24 470 return
Chris@24 471 a0 * x * x * x +
Chris@24 472 a1 * x * x +
Chris@24 473 a2 * x +
Chris@24 474 a3;
Chris@24 475 }
Chris@24 476
Chris@24 477 double
Chris@24 478 SimpleCepstrum::findInterpolatedPeak(const double *in, int maxbin)
Chris@24 479 {
Chris@24 480 if (maxbin < 2 || maxbin > m_bins - 3) {
Chris@24 481 return maxbin;
Chris@24 482 }
Chris@24 483
Chris@24 484 double maxval = 0.0;
Chris@24 485 double maxidx = maxbin;
Chris@24 486
Chris@24 487 const int divisions = 10;
Chris@24 488 double y[4];
Chris@24 489
Chris@24 490 y[0] = in[maxbin-1];
Chris@24 491 y[1] = in[maxbin];
Chris@24 492 y[2] = in[maxbin+1];
Chris@24 493 y[3] = in[maxbin+2];
Chris@24 494 for (int i = 0; i < divisions; ++i) {
Chris@24 495 double probe = double(i) / double(divisions);
Chris@24 496 double value = cubicInterpolate(y, probe);
Chris@24 497 if (value > maxval) {
Chris@24 498 maxval = value;
Chris@24 499 maxidx = maxbin + probe;
Chris@24 500 }
Chris@24 501 }
Chris@24 502
Chris@24 503 y[3] = y[2];
Chris@24 504 y[2] = y[1];
Chris@24 505 y[1] = y[0];
Chris@24 506 y[0] = in[maxbin-2];
Chris@24 507 for (int i = 0; i < divisions; ++i) {
Chris@24 508 double probe = double(i) / double(divisions);
Chris@24 509 double value = cubicInterpolate(y, probe);
Chris@24 510 if (value > maxval) {
Chris@24 511 maxval = value;
Chris@24 512 maxidx = maxbin - 1 + probe;
Chris@24 513 }
Chris@24 514 }
Chris@24 515
Chris@24 516 /*
Chris@24 517 std::cerr << "centre = " << maxbin << ": ["
Chris@24 518 << in[maxbin-2] << ","
Chris@24 519 << in[maxbin-1] << ","
Chris@24 520 << in[maxbin] << ","
Chris@24 521 << in[maxbin+1] << ","
Chris@24 522 << in[maxbin+2] << "] -> " << maxidx << std::endl;
Chris@24 523 */
Chris@24 524
Chris@24 525 return maxidx;
Chris@24 526 }
Chris@5 527
Chris@5 528 void
Chris@5 529 SimpleCepstrum::addStatisticalOutputs(FeatureSet &fs, const double *data)
Chris@5 530 {
Chris@5 531 int n = m_bins;
Chris@5 532
Chris@6 533 double maxval = 0.0;
Chris@5 534 int maxbin = 0;
Chris@5 535
Chris@5 536 for (int i = 0; i < n; ++i) {
Chris@5 537 if (data[i] > maxval) {
Chris@5 538 maxval = data[i];
Chris@6 539 maxbin = i;
Chris@5 540 }
Chris@5 541 }
Chris@5 542
Chris@20 543 double nextPeakVal = 0.0;
Chris@20 544
Chris@20 545 for (int i = 1; i+1 < n; ++i) {
Chris@20 546 if (data[i] > data[i-1] &&
Chris@20 547 data[i] > data[i+1] &&
Chris@20 548 i != maxbin &&
Chris@20 549 data[i] > nextPeakVal) {
Chris@20 550 nextPeakVal = data[i];
Chris@20 551 }
Chris@20 552 }
Chris@20 553
Chris@5 554 Feature rf;
Chris@24 555 Feature irf;
Chris@6 556 if (maxval > 0.0) {
Chris@6 557 rf.values.push_back(m_inputSampleRate / (maxbin + m_binFrom));
Chris@24 558 double cimax = findInterpolatedPeak(data, maxbin);
Chris@24 559 irf.values.push_back(m_inputSampleRate / (cimax + m_binFrom));
Chris@5 560 } else {
Chris@5 561 rf.values.push_back(0);
Chris@24 562 irf.values.push_back(0);
Chris@5 563 }
Chris@5 564 fs[m_pkOutput].push_back(rf);
Chris@24 565 fs[m_ipkOutput].push_back(irf);
Chris@5 566
Chris@6 567 double total = 0;
Chris@5 568 for (int i = 0; i < n; ++i) {
Chris@6 569 total += data[i];
Chris@5 570 }
Chris@5 571
Chris@6 572 Feature tot;
Chris@6 573 tot.values.push_back(total);
Chris@6 574 fs[m_totOutput].push_back(tot);
Chris@6 575
Chris@6 576 double mean = total / n;
Chris@6 577
Chris@6 578 double totsqr = 0;
Chris@8 579 double abstot = 0;
Chris@5 580 for (int i = 0; i < n; ++i) {
Chris@6 581 totsqr += data[i] * data[i];
Chris@8 582 abstot += fabs(data[i]);
Chris@5 583 }
Chris@6 584 double rms = sqrt(totsqr / n);
Chris@5 585
Chris@5 586 double variance = 0;
Chris@5 587 for (int i = 0; i < n; ++i) {
Chris@5 588 double dev = fabs(data[i] - mean);
Chris@5 589 variance += dev * dev;
Chris@5 590 }
Chris@5 591 variance /= n;
Chris@5 592
Chris@6 593 double aroundPeak = 0.0;
Chris@6 594 double peakProportion = 0.0;
Chris@6 595 if (maxval > 0.0) {
Chris@7 596 aroundPeak += fabs(maxval);
Chris@6 597 int i = maxbin - 1;
Chris@6 598 while (i > 0 && data[i] <= data[i+1]) {
Chris@7 599 aroundPeak += fabs(data[i]);
Chris@6 600 --i;
Chris@6 601 }
Chris@6 602 i = maxbin + 1;
Chris@6 603 while (i < n && data[i] <= data[i-1]) {
Chris@7 604 aroundPeak += fabs(data[i]);
Chris@6 605 ++i;
Chris@6 606 }
Chris@6 607 }
Chris@8 608 peakProportion = aroundPeak / abstot;
Chris@6 609 Feature pp;
Chris@6 610 pp.values.push_back(peakProportion);
Chris@6 611 fs[m_ppOutput].push_back(pp);
Chris@6 612
Chris@5 613 Feature vf;
Chris@5 614 vf.values.push_back(variance);
Chris@5 615 fs[m_varOutput].push_back(vf);
Chris@5 616
Chris@5 617 Feature pr;
Chris@5 618 pr.values.push_back(maxval - rms);
Chris@5 619 fs[m_p2rOutput].push_back(pr);
Chris@5 620
Chris@5 621 Feature pv;
Chris@5 622 pv.values.push_back(maxval);
Chris@5 623 fs[m_pvOutput].push_back(pv);
Chris@5 624
Chris@20 625 Feature pko;
Chris@20 626 if (nextPeakVal != 0.0) {
Chris@27 627 pko.values.push_back(maxval - nextPeakVal);
Chris@20 628 } else {
Chris@20 629 pko.values.push_back(0.0);
Chris@20 630 }
Chris@20 631 fs[m_pkoOutput].push_back(pko);
Chris@20 632
Chris@5 633 Feature am;
Chris@5 634 for (int i = 0; i < n; ++i) {
Chris@5 635 if (data[i] < rms) am.values.push_back(0);
Chris@5 636 else am.values.push_back(data[i] - rms);
Chris@5 637 }
Chris@5 638 fs[m_amOutput].push_back(am);
Chris@5 639 }
Chris@5 640
Chris@5 641 void
Chris@5 642 SimpleCepstrum::addEnvelopeOutputs(FeatureSet &fs, const float *const *inputBuffers, const double *cep)
Chris@5 643 {
Chris@5 644 // Wipe the higher cepstral bins in order to calculate the
Chris@5 645 // envelope. This calculation uses the raw cepstrum, not the
Chris@5 646 // filtered values (because only values "in frequency range" are
Chris@5 647 // filtered).
Chris@5 648 int bs = m_blockSize;
Chris@5 649 int hs = m_blockSize/2 + 1;
Chris@5 650
Chris@5 651 double *ecep = new double[bs];
Chris@5 652 for (int i = 0; i < m_binFrom; ++i) {
Chris@5 653 ecep[i] = cep[i] / bs;
Chris@5 654 }
Chris@5 655 for (int i = m_binFrom; i < bs; ++i) {
Chris@5 656 ecep[i] = 0;
Chris@5 657 }
Chris@5 658 ecep[0] /= 2;
Chris@5 659 ecep[m_binFrom-1] /= 2;
Chris@5 660
Chris@5 661 double *env = new double[bs];
Chris@5 662 double *io = new double[bs];
Chris@7 663
Chris@7 664 //!!! This is only right if the previous transform was an inverse one!
Chris@33 665 Vamp::FFT::forward(bs, ecep, 0, env, io);
Chris@5 666
Chris@5 667 for (int i = 0; i < hs; ++i) {
Chris@5 668 env[i] = exp(env[i]);
Chris@5 669 }
Chris@5 670 Feature envf;
Chris@5 671 for (int i = 0; i < hs; ++i) {
Chris@5 672 envf.values.push_back(env[i]);
Chris@5 673 }
Chris@5 674 fs[m_envOutput].push_back(envf);
Chris@5 675
Chris@5 676 Feature es;
Chris@5 677 for (int i = 0; i < hs; ++i) {
Chris@5 678 double re = inputBuffers[0][i*2 ] / env[i];
Chris@5 679 double im = inputBuffers[0][i*2+1] / env[i];
Chris@5 680 double mag = sqrt(re*re + im*im);
Chris@5 681 es.values.push_back(mag);
Chris@5 682 }
Chris@5 683 fs[m_esOutput].push_back(es);
Chris@5 684
Chris@5 685 delete[] env;
Chris@5 686 delete[] ecep;
Chris@5 687 delete[] io;
Chris@0 688 }
Chris@0 689
Chris@0 690 SimpleCepstrum::FeatureSet
Chris@0 691 SimpleCepstrum::process(const float *const *inputBuffers, Vamp::RealTime timestamp)
Chris@0 692 {
Chris@1 693 FeatureSet fs;
Chris@1 694
Chris@0 695 int bs = m_blockSize;
Chris@0 696 int hs = m_blockSize/2 + 1;
Chris@0 697
Chris@5 698 double *rawcep = new double[bs];
Chris@3 699 double *io = new double[bs];
Chris@3 700
Chris@4 701 if (m_method != InverseComplex) {
Chris@3 702
Chris@4 703 double *logmag = new double[bs];
Chris@4 704
Chris@4 705 for (int i = 0; i < hs; ++i) {
Chris@3 706
Chris@4 707 double power =
Chris@4 708 inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] +
Chris@4 709 inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1];
Chris@5 710 double mag = sqrt(power);
Chris@3 711
Chris@5 712 double lm = log(mag + 0.00000001);
Chris@4 713
Chris@4 714 switch (m_method) {
Chris@4 715 case InverseSymmetric:
Chris@4 716 logmag[i] = lm;
Chris@4 717 if (i > 0) logmag[bs - i] = lm;
Chris@4 718 break;
Chris@4 719 case InverseAsymmetric:
Chris@4 720 logmag[i] = lm;
Chris@4 721 if (i > 0) logmag[bs - i] = 0;
Chris@4 722 break;
Chris@4 723 default:
Chris@4 724 logmag[bs/2 + i - 1] = lm;
Chris@4 725 if (i < hs-1) {
Chris@4 726 logmag[bs/2 - i - 1] = lm;
Chris@4 727 }
Chris@4 728 break;
Chris@3 729 }
Chris@3 730 }
Chris@4 731
Chris@4 732 if (m_method == InverseSymmetric ||
Chris@4 733 m_method == InverseAsymmetric) {
Chris@4 734
Chris@33 735 Vamp::FFT::inverse(bs, logmag, 0, rawcep, io);
Chris@4 736
Chris@4 737 } else {
Chris@4 738
Chris@33 739 Vamp::FFT::forward(bs, logmag, 0, rawcep, io);
Chris@4 740
Chris@4 741 if (m_method == ForwardDifference) {
Chris@4 742 for (int i = 0; i < hs; ++i) {
Chris@5 743 rawcep[i] = fabs(io[i]) - fabs(rawcep[i]);
Chris@4 744 }
Chris@4 745 } else {
Chris@4 746 for (int i = 0; i < hs; ++i) {
Chris@5 747 rawcep[i] = sqrt(rawcep[i]*rawcep[i] + io[i]*io[i]);
Chris@4 748 }
Chris@4 749 }
Chris@4 750 }
Chris@4 751
Chris@4 752 delete[] logmag;
Chris@4 753
Chris@4 754 } else { // InverseComplex
Chris@4 755
Chris@4 756 double *ri = new double[bs];
Chris@4 757 double *ii = new double[bs];
Chris@4 758
Chris@4 759 for (int i = 0; i < hs; ++i) {
Chris@4 760 double re = inputBuffers[0][i*2];
Chris@4 761 double im = inputBuffers[0][i*2+1];
Chris@4 762 std::complex<double> c(re, im);
Chris@4 763 std::complex<double> clog = std::log(c);
Chris@4 764 ri[i] = clog.real();
Chris@4 765 ii[i] = clog.imag();
Chris@4 766 if (i > 0) {
Chris@4 767 ri[bs - i] = ri[i];
Chris@4 768 ii[bs - i] = -ii[i];
Chris@4 769 }
Chris@4 770 }
Chris@4 771
Chris@33 772 Vamp::FFT::inverse(bs, ri, ii, rawcep, io);
Chris@4 773
Chris@4 774 delete[] ri;
Chris@4 775 delete[] ii;
Chris@3 776 }
Chris@0 777
Chris@0 778 if (m_clamp) {
Chris@0 779 for (int i = 0; i < bs; ++i) {
Chris@5 780 if (rawcep[i] < 0) rawcep[i] = 0;
Chris@0 781 }
Chris@0 782 }
Chris@0 783
Chris@5 784 delete[] io;
Chris@0 785
Chris@5 786 double *latest = new double[m_bins];
Chris@5 787 filter(rawcep, latest);
Chris@5 788
Chris@5 789 int n = m_bins;
Chris@0 790
Chris@0 791 Feature cf;
Chris@5 792 for (int i = 0; i < n; ++i) {
Chris@5 793 cf.values.push_back(latest[i]);
Chris@0 794 }
Chris@0 795 fs[m_cepOutput].push_back(cf);
Chris@0 796
Chris@5 797 addStatisticalOutputs(fs, latest);
Chris@0 798
Chris@5 799 addEnvelopeOutputs(fs, inputBuffers, rawcep);
Chris@0 800
Chris@5 801 delete[] latest;
Chris@7 802 delete[] rawcep;
Chris@0 803
Chris@0 804 return fs;
Chris@0 805 }
Chris@0 806
Chris@0 807 SimpleCepstrum::FeatureSet
Chris@0 808 SimpleCepstrum::getRemainingFeatures()
Chris@0 809 {
Chris@0 810 FeatureSet fs;
Chris@0 811 return fs;
Chris@0 812 }