annotate SimpleCepstrum.cpp @ 5:05c558f1a23b

Change "relative to mean" to "relative to RMS", and add peak-to-RMS output. Add a mean-filter history. Remove essentially useless forward-power method (same as forward-magnitude with 2x factor). Refactor a bit
author Chris Cannam
date Mon, 25 Jun 2012 11:45:33 +0100
parents 3467d995ea2b
children ffed34f519db
rev   line source
Chris@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@0 2
Chris@0 3 #include "SimpleCepstrum.h"
Chris@0 4
Chris@0 5 #include <vector>
Chris@0 6 #include <algorithm>
Chris@0 7
Chris@0 8 #include <cstdio>
Chris@0 9 #include <cmath>
Chris@4 10 #include <complex>
Chris@0 11
Chris@0 12 using std::string;
Chris@0 13
Chris@0 14 SimpleCepstrum::SimpleCepstrum(float inputSampleRate) :
Chris@0 15 Plugin(inputSampleRate),
Chris@0 16 m_channels(0),
Chris@0 17 m_stepSize(256),
Chris@0 18 m_blockSize(1024),
Chris@0 19 m_fmin(50),
Chris@0 20 m_fmax(1000),
Chris@5 21 m_histlen(3),
Chris@3 22 m_clamp(false),
Chris@5 23 m_method(InverseSymmetric),
Chris@5 24 m_binFrom(0),
Chris@5 25 m_binTo(0),
Chris@5 26 m_bins(0),
Chris@5 27 m_history(0)
Chris@0 28 {
Chris@0 29 }
Chris@0 30
Chris@0 31 SimpleCepstrum::~SimpleCepstrum()
Chris@0 32 {
Chris@5 33 if (m_history) {
Chris@5 34 for (int i = 0; i < m_histlen; ++i) {
Chris@5 35 delete[] m_history[i];
Chris@5 36 }
Chris@5 37 delete[] m_history;
Chris@5 38 }
Chris@0 39 }
Chris@0 40
Chris@0 41 string
Chris@0 42 SimpleCepstrum::getIdentifier() const
Chris@0 43 {
Chris@0 44 return "simple-cepstrum";
Chris@0 45 }
Chris@0 46
Chris@0 47 string
Chris@0 48 SimpleCepstrum::getName() const
Chris@0 49 {
Chris@0 50 return "Simple Cepstrum";
Chris@0 51 }
Chris@0 52
Chris@0 53 string
Chris@0 54 SimpleCepstrum::getDescription() const
Chris@0 55 {
Chris@2 56 return "Return simple cepstral data from DFT bins. This plugin is intended for casual inspection of cepstral data. It returns a lot of different sorts of data and is quite slow; it's not a good way to extract a single feature rapidly.";
Chris@0 57 }
Chris@0 58
Chris@0 59 string
Chris@0 60 SimpleCepstrum::getMaker() const
Chris@0 61 {
Chris@0 62 // Your name here
Chris@0 63 return "";
Chris@0 64 }
Chris@0 65
Chris@0 66 int
Chris@0 67 SimpleCepstrum::getPluginVersion() const
Chris@0 68 {
Chris@0 69 // Increment this each time you release a version that behaves
Chris@0 70 // differently from the previous one
Chris@0 71 return 1;
Chris@0 72 }
Chris@0 73
Chris@0 74 string
Chris@0 75 SimpleCepstrum::getCopyright() const
Chris@0 76 {
Chris@0 77 // This function is not ideally named. It does not necessarily
Chris@0 78 // need to say who made the plugin -- getMaker does that -- but it
Chris@0 79 // should indicate the terms under which it is distributed. For
Chris@0 80 // example, "Copyright (year). All Rights Reserved", or "GPL"
Chris@0 81 return "";
Chris@0 82 }
Chris@0 83
Chris@0 84 SimpleCepstrum::InputDomain
Chris@0 85 SimpleCepstrum::getInputDomain() const
Chris@0 86 {
Chris@0 87 return FrequencyDomain;
Chris@0 88 }
Chris@0 89
Chris@0 90 size_t
Chris@0 91 SimpleCepstrum::getPreferredBlockSize() const
Chris@0 92 {
Chris@0 93 return 1024;
Chris@0 94 }
Chris@0 95
Chris@0 96 size_t
Chris@0 97 SimpleCepstrum::getPreferredStepSize() const
Chris@0 98 {
Chris@0 99 return 256;
Chris@0 100 }
Chris@0 101
Chris@0 102 size_t
Chris@0 103 SimpleCepstrum::getMinChannelCount() const
Chris@0 104 {
Chris@0 105 return 1;
Chris@0 106 }
Chris@0 107
Chris@0 108 size_t
Chris@0 109 SimpleCepstrum::getMaxChannelCount() const
Chris@0 110 {
Chris@0 111 return 1;
Chris@0 112 }
Chris@0 113
Chris@0 114 SimpleCepstrum::ParameterList
Chris@0 115 SimpleCepstrum::getParameterDescriptors() const
Chris@0 116 {
Chris@0 117 ParameterList list;
Chris@0 118
Chris@0 119 ParameterDescriptor d;
Chris@0 120
Chris@0 121 d.identifier = "fmin";
Chris@0 122 d.name = "Minimum frequency";
Chris@0 123 d.description = "";
Chris@0 124 d.unit = "Hz";
Chris@0 125 d.minValue = m_inputSampleRate / m_blockSize;
Chris@0 126 d.maxValue = m_inputSampleRate / 2;
Chris@0 127 d.defaultValue = 50;
Chris@0 128 d.isQuantized = false;
Chris@0 129 list.push_back(d);
Chris@0 130
Chris@0 131 d.identifier = "fmax";
Chris@0 132 d.name = "Maximum frequency";
Chris@0 133 d.description = "";
Chris@0 134 d.unit = "Hz";
Chris@0 135 d.minValue = m_inputSampleRate / m_blockSize;
Chris@0 136 d.maxValue = m_inputSampleRate / 2;
Chris@0 137 d.defaultValue = 1000;
Chris@0 138 d.isQuantized = false;
Chris@0 139 list.push_back(d);
Chris@0 140
Chris@5 141 d.identifier = "histlen";
Chris@5 142 d.name = "Mean filter history length";
Chris@5 143 d.description = "";
Chris@5 144 d.unit = "";
Chris@5 145 d.minValue = 1;
Chris@5 146 d.maxValue = 10;
Chris@5 147 d.defaultValue = 3;
Chris@5 148 d.isQuantized = true;
Chris@5 149 d.quantizeStep = 1;
Chris@5 150 list.push_back(d);
Chris@5 151
Chris@3 152 d.identifier = "method";
Chris@3 153 d.name = "Cepstrum transform method";
Chris@3 154 d.unit = "";
Chris@3 155 d.minValue = 0;
Chris@5 156 d.maxValue = 4;
Chris@3 157 d.defaultValue = 0;
Chris@3 158 d.isQuantized = true;
Chris@3 159 d.quantizeStep = 1;
Chris@3 160 d.valueNames.push_back("Inverse symmetric");
Chris@3 161 d.valueNames.push_back("Inverse asymmetric");
Chris@4 162 d.valueNames.push_back("Inverse complex");
Chris@3 163 d.valueNames.push_back("Forward magnitude");
Chris@3 164 d.valueNames.push_back("Forward difference");
Chris@3 165 list.push_back(d);
Chris@3 166
Chris@0 167 d.identifier = "clamp";
Chris@0 168 d.name = "Clamp negative values in cepstrum at zero";
Chris@0 169 d.unit = "";
Chris@0 170 d.minValue = 0;
Chris@0 171 d.maxValue = 1;
Chris@0 172 d.defaultValue = 0;
Chris@0 173 d.isQuantized = true;
Chris@0 174 d.quantizeStep = 1;
Chris@3 175 d.valueNames.clear();
Chris@0 176 list.push_back(d);
Chris@0 177
Chris@0 178 return list;
Chris@0 179 }
Chris@0 180
Chris@0 181 float
Chris@0 182 SimpleCepstrum::getParameter(string identifier) const
Chris@0 183 {
Chris@0 184 if (identifier == "fmin") return m_fmin;
Chris@0 185 else if (identifier == "fmax") return m_fmax;
Chris@5 186 else if (identifier == "histlen") return m_histlen;
Chris@0 187 else if (identifier == "clamp") return (m_clamp ? 1 : 0);
Chris@3 188 else if (identifier == "method") return (int)m_method;
Chris@0 189 else return 0.f;
Chris@0 190 }
Chris@0 191
Chris@0 192 void
Chris@0 193 SimpleCepstrum::setParameter(string identifier, float value)
Chris@0 194 {
Chris@0 195 if (identifier == "fmin") m_fmin = value;
Chris@0 196 else if (identifier == "fmax") m_fmax = value;
Chris@5 197 else if (identifier == "histlen") m_histlen = value;
Chris@0 198 else if (identifier == "clamp") m_clamp = (value > 0.5);
Chris@3 199 else if (identifier == "method") m_method = Method(int(value + 0.5));
Chris@0 200 }
Chris@0 201
Chris@0 202 SimpleCepstrum::ProgramList
Chris@0 203 SimpleCepstrum::getPrograms() const
Chris@0 204 {
Chris@0 205 ProgramList list;
Chris@0 206 return list;
Chris@0 207 }
Chris@0 208
Chris@0 209 string
Chris@0 210 SimpleCepstrum::getCurrentProgram() const
Chris@0 211 {
Chris@0 212 return ""; // no programs
Chris@0 213 }
Chris@0 214
Chris@0 215 void
Chris@0 216 SimpleCepstrum::selectProgram(string name)
Chris@0 217 {
Chris@0 218 }
Chris@0 219
Chris@0 220 SimpleCepstrum::OutputList
Chris@0 221 SimpleCepstrum::getOutputDescriptors() const
Chris@0 222 {
Chris@0 223 OutputList outputs;
Chris@0 224
Chris@0 225 int n = 0;
Chris@0 226
Chris@0 227 OutputDescriptor d;
Chris@2 228
Chris@0 229 d.identifier = "f0";
Chris@0 230 d.name = "Estimated fundamental frequency";
Chris@0 231 d.description = "";
Chris@0 232 d.unit = "";
Chris@0 233 d.hasFixedBinCount = true;
Chris@0 234 d.binCount = 1;
Chris@0 235 d.hasKnownExtents = true;
Chris@0 236 d.minValue = m_fmin;
Chris@0 237 d.maxValue = m_fmax;
Chris@0 238 d.isQuantized = false;
Chris@0 239 d.sampleType = OutputDescriptor::OneSamplePerStep;
Chris@0 240 d.hasDuration = false;
Chris@2 241 /*
Chris@0 242 m_f0Output = n++;
Chris@0 243 outputs.push_back(d);
Chris@2 244 */
Chris@0 245
Chris@0 246 d.identifier = "raw_cepstral_peak";
Chris@0 247 d.name = "Frequency corresponding to raw cepstral peak";
Chris@2 248 d.description = "Return the frequency whose period corresponds to the quefrency with the maximum value within the specified range of the cepstrum";
Chris@0 249 d.unit = "Hz";
Chris@5 250 m_pkOutput = n++;
Chris@0 251 outputs.push_back(d);
Chris@0 252
Chris@0 253 d.identifier = "variance";
Chris@0 254 d.name = "Variance of cepstral bins in range";
Chris@0 255 d.unit = "";
Chris@2 256 d.description = "Return the variance of bin values within the specified range of the cepstrum";
Chris@0 257 m_varOutput = n++;
Chris@0 258 outputs.push_back(d);
Chris@0 259
Chris@0 260 d.identifier = "peak";
Chris@0 261 d.name = "Peak value";
Chris@0 262 d.unit = "";
Chris@2 263 d.description = "Return the value found in the maximum-valued bin within the specified range of the cepstrum";
Chris@0 264 m_pvOutput = n++;
Chris@0 265 outputs.push_back(d);
Chris@0 266
Chris@0 267 d.identifier = "peak_to_mean";
Chris@0 268 d.name = "Peak-to-mean distance";
Chris@0 269 d.unit = "";
Chris@2 270 d.description = "Return the difference between maximum and mean bin values within the specified range of the cepstrum";
Chris@0 271 m_p2mOutput = n++;
Chris@0 272 outputs.push_back(d);
Chris@0 273
Chris@5 274 d.identifier = "peak_to_rms";
Chris@5 275 d.name = "Peak-to-RMS distance";
Chris@5 276 d.unit = "";
Chris@5 277 d.description = "Return the difference between maximum and root mean square bin values within the specified range of the cepstrum";
Chris@5 278 m_p2rOutput = n++;
Chris@5 279 outputs.push_back(d);
Chris@5 280
Chris@0 281 d.identifier = "cepstrum";
Chris@0 282 d.name = "Cepstrum";
Chris@0 283 d.unit = "";
Chris@2 284 d.description = "The unprocessed cepstrum bins within the specified range";
Chris@0 285
Chris@0 286 int from = int(m_inputSampleRate / m_fmax);
Chris@0 287 int to = int(m_inputSampleRate / m_fmin);
Chris@0 288 if (to >= (int)m_blockSize / 2) {
Chris@0 289 to = m_blockSize / 2 - 1;
Chris@0 290 }
Chris@0 291 d.binCount = to - from + 1;
Chris@0 292 for (int i = from; i <= to; ++i) {
Chris@0 293 float freq = m_inputSampleRate / i;
Chris@5 294 char buffer[20];
Chris@2 295 sprintf(buffer, "%.2f Hz", freq);
Chris@0 296 d.binNames.push_back(buffer);
Chris@0 297 }
Chris@0 298
Chris@0 299 d.hasKnownExtents = false;
Chris@0 300 m_cepOutput = n++;
Chris@0 301 outputs.push_back(d);
Chris@0 302
Chris@0 303 d.identifier = "am";
Chris@5 304 d.name = "Cepstrum bins relative to RMS";
Chris@5 305 d.description = "The cepstrum bins within the specified range, expressed as a value relative to the root mean square bin value in the range, with values below the RMS clamped to zero";
Chris@0 306 m_amOutput = n++;
Chris@0 307 outputs.push_back(d);
Chris@0 308
Chris@2 309 d.identifier = "env";
Chris@2 310 d.name = "Spectral envelope";
Chris@2 311 d.description = "Envelope calculated from the cepstral values below the specified minimum";
Chris@2 312 d.binCount = m_blockSize/2 + 1;
Chris@2 313 d.binNames.clear();
Chris@2 314 for (int i = 0; i < d.binCount; ++i) {
Chris@2 315 float freq = (m_inputSampleRate / m_blockSize) * i;
Chris@5 316 char buffer[20];
Chris@2 317 sprintf(buffer, "%.2f Hz", freq);
Chris@2 318 d.binNames.push_back(buffer);
Chris@2 319 }
Chris@2 320 m_envOutput = n++;
Chris@2 321 outputs.push_back(d);
Chris@2 322
Chris@2 323 d.identifier = "es";
Chris@2 324 d.name = "Spectrum without envelope";
Chris@2 325 d.description = "Magnitude of spectrum values divided by calculated envelope values, to deconvolve the envelope";
Chris@2 326 m_esOutput = n++;
Chris@2 327 outputs.push_back(d);
Chris@2 328
Chris@0 329 return outputs;
Chris@0 330 }
Chris@0 331
Chris@0 332 bool
Chris@0 333 SimpleCepstrum::initialise(size_t channels, size_t stepSize, size_t blockSize)
Chris@0 334 {
Chris@0 335 if (channels < getMinChannelCount() ||
Chris@0 336 channels > getMaxChannelCount()) return false;
Chris@0 337
Chris@0 338 // std::cerr << "SimpleCepstrum::initialise: channels = " << channels
Chris@0 339 // << ", stepSize = " << stepSize << ", blockSize = " << blockSize
Chris@0 340 // << std::endl;
Chris@0 341
Chris@0 342 m_channels = channels;
Chris@0 343 m_stepSize = stepSize;
Chris@0 344 m_blockSize = blockSize;
Chris@0 345
Chris@5 346 m_binFrom = int(m_inputSampleRate / m_fmax);
Chris@5 347 m_binTo = int(m_inputSampleRate / m_fmin);
Chris@5 348
Chris@5 349 if (m_binTo >= m_blockSize / 2) {
Chris@5 350 m_binTo = m_blockSize / 2 - 1;
Chris@5 351 }
Chris@5 352
Chris@5 353 m_bins = (m_binTo - m_binFrom) + 1;
Chris@5 354
Chris@5 355 m_history = new double *[m_histlen];
Chris@5 356 for (int i = 0; i < m_histlen; ++i) {
Chris@5 357 m_history[i] = new double[m_bins];
Chris@5 358 }
Chris@5 359
Chris@5 360 reset();
Chris@5 361
Chris@0 362 return true;
Chris@0 363 }
Chris@0 364
Chris@0 365 void
Chris@0 366 SimpleCepstrum::reset()
Chris@0 367 {
Chris@5 368 for (int i = 0; i < m_histlen; ++i) {
Chris@5 369 for (int j = 0; j < m_bins; ++j) {
Chris@5 370 m_history[i][j] = 0.0;
Chris@5 371 }
Chris@5 372 }
Chris@5 373 }
Chris@5 374
Chris@5 375 void
Chris@5 376 SimpleCepstrum::filter(const double *cep, double *result)
Chris@5 377 {
Chris@5 378 int hix = m_histlen - 1; // current history index
Chris@5 379
Chris@5 380 // roll back the history
Chris@5 381 if (m_histlen > 1) {
Chris@5 382 double *oldest = m_history[0];
Chris@5 383 for (int i = 1; i < m_histlen; ++i) {
Chris@5 384 m_history[i-1] = m_history[i];
Chris@5 385 }
Chris@5 386 // and stick this back in the newest spot, to recycle
Chris@5 387 m_history[hix] = oldest;
Chris@5 388 }
Chris@5 389
Chris@5 390 for (int i = 0; i < m_bins; ++i) {
Chris@5 391 m_history[hix][i] = cep[i + m_binFrom];
Chris@5 392 }
Chris@5 393
Chris@5 394 for (int i = 0; i < m_bins; ++i) {
Chris@5 395 double mean = 0.0;
Chris@5 396 for (int j = 0; j < m_histlen; ++j) {
Chris@5 397 mean += m_history[j][i];
Chris@5 398 }
Chris@5 399 mean /= m_histlen;
Chris@5 400 result[i] = mean;
Chris@5 401 }
Chris@5 402 }
Chris@5 403
Chris@5 404 void
Chris@5 405 SimpleCepstrum::addStatisticalOutputs(FeatureSet &fs, const double *data)
Chris@5 406 {
Chris@5 407 int n = m_bins;
Chris@5 408
Chris@5 409 double maxval = 0.f;
Chris@5 410 int maxbin = 0;
Chris@5 411
Chris@5 412 for (int i = 0; i < n; ++i) {
Chris@5 413 if (data[i] > maxval) {
Chris@5 414 maxval = data[i];
Chris@5 415 maxbin = i + m_binFrom;
Chris@5 416 }
Chris@5 417 }
Chris@5 418
Chris@5 419 Feature rf;
Chris@5 420 if (maxbin > 0) {
Chris@5 421 rf.values.push_back(m_inputSampleRate / maxbin);
Chris@5 422 } else {
Chris@5 423 rf.values.push_back(0);
Chris@5 424 }
Chris@5 425 fs[m_pkOutput].push_back(rf);
Chris@5 426
Chris@5 427 double mean = 0;
Chris@5 428 for (int i = 0; i < n; ++i) {
Chris@5 429 mean += data[i];
Chris@5 430 }
Chris@5 431 mean /= n;
Chris@5 432
Chris@5 433 double rms = 0;
Chris@5 434 for (int i = 0; i < n; ++i) {
Chris@5 435 rms += data[i] * data[i];
Chris@5 436 }
Chris@5 437 rms = sqrt(rms / n);
Chris@5 438
Chris@5 439 double variance = 0;
Chris@5 440 for (int i = 0; i < n; ++i) {
Chris@5 441 double dev = fabs(data[i] - mean);
Chris@5 442 variance += dev * dev;
Chris@5 443 }
Chris@5 444 variance /= n;
Chris@5 445
Chris@5 446 Feature vf;
Chris@5 447 vf.values.push_back(variance);
Chris@5 448 fs[m_varOutput].push_back(vf);
Chris@5 449
Chris@5 450 Feature pf;
Chris@5 451 pf.values.push_back(maxval - mean);
Chris@5 452 fs[m_p2mOutput].push_back(pf);
Chris@5 453
Chris@5 454 Feature pr;
Chris@5 455 pr.values.push_back(maxval - rms);
Chris@5 456 fs[m_p2rOutput].push_back(pr);
Chris@5 457
Chris@5 458 Feature pv;
Chris@5 459 pv.values.push_back(maxval);
Chris@5 460 fs[m_pvOutput].push_back(pv);
Chris@5 461
Chris@5 462 Feature am;
Chris@5 463 for (int i = 0; i < n; ++i) {
Chris@5 464 if (data[i] < rms) am.values.push_back(0);
Chris@5 465 else am.values.push_back(data[i] - rms);
Chris@5 466 }
Chris@5 467 fs[m_amOutput].push_back(am);
Chris@5 468 }
Chris@5 469
Chris@5 470 void
Chris@5 471 SimpleCepstrum::addEnvelopeOutputs(FeatureSet &fs, const float *const *inputBuffers, const double *cep)
Chris@5 472 {
Chris@5 473 // Wipe the higher cepstral bins in order to calculate the
Chris@5 474 // envelope. This calculation uses the raw cepstrum, not the
Chris@5 475 // filtered values (because only values "in frequency range" are
Chris@5 476 // filtered).
Chris@5 477 int bs = m_blockSize;
Chris@5 478 int hs = m_blockSize/2 + 1;
Chris@5 479
Chris@5 480 double *ecep = new double[bs];
Chris@5 481 for (int i = 0; i < m_binFrom; ++i) {
Chris@5 482 ecep[i] = cep[i] / bs;
Chris@5 483 }
Chris@5 484 for (int i = m_binFrom; i < bs; ++i) {
Chris@5 485 ecep[i] = 0;
Chris@5 486 }
Chris@5 487 ecep[0] /= 2;
Chris@5 488 ecep[m_binFrom-1] /= 2;
Chris@5 489
Chris@5 490 double *env = new double[bs];
Chris@5 491 double *io = new double[bs];
Chris@5 492 fft(bs, false, ecep, 0, env, io);
Chris@5 493
Chris@5 494 for (int i = 0; i < hs; ++i) {
Chris@5 495 env[i] = exp(env[i]);
Chris@5 496 }
Chris@5 497 Feature envf;
Chris@5 498 for (int i = 0; i < hs; ++i) {
Chris@5 499 envf.values.push_back(env[i]);
Chris@5 500 }
Chris@5 501 fs[m_envOutput].push_back(envf);
Chris@5 502
Chris@5 503 Feature es;
Chris@5 504 for (int i = 0; i < hs; ++i) {
Chris@5 505 double re = inputBuffers[0][i*2 ] / env[i];
Chris@5 506 double im = inputBuffers[0][i*2+1] / env[i];
Chris@5 507 double mag = sqrt(re*re + im*im);
Chris@5 508 es.values.push_back(mag);
Chris@5 509 }
Chris@5 510 fs[m_esOutput].push_back(es);
Chris@5 511
Chris@5 512 delete[] env;
Chris@5 513 delete[] ecep;
Chris@5 514 delete[] io;
Chris@0 515 }
Chris@0 516
Chris@0 517 SimpleCepstrum::FeatureSet
Chris@0 518 SimpleCepstrum::process(const float *const *inputBuffers, Vamp::RealTime timestamp)
Chris@0 519 {
Chris@1 520 FeatureSet fs;
Chris@1 521
Chris@0 522 int bs = m_blockSize;
Chris@0 523 int hs = m_blockSize/2 + 1;
Chris@0 524
Chris@5 525 double *rawcep = new double[bs];
Chris@3 526 double *io = new double[bs];
Chris@3 527
Chris@4 528 if (m_method != InverseComplex) {
Chris@3 529
Chris@4 530 double *logmag = new double[bs];
Chris@4 531
Chris@4 532 for (int i = 0; i < hs; ++i) {
Chris@3 533
Chris@4 534 double power =
Chris@4 535 inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] +
Chris@4 536 inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1];
Chris@5 537 double mag = sqrt(power);
Chris@3 538
Chris@5 539 double lm = log(mag + 0.00000001);
Chris@4 540
Chris@4 541 switch (m_method) {
Chris@4 542 case InverseSymmetric:
Chris@4 543 logmag[i] = lm;
Chris@4 544 if (i > 0) logmag[bs - i] = lm;
Chris@4 545 break;
Chris@4 546 case InverseAsymmetric:
Chris@4 547 logmag[i] = lm;
Chris@4 548 if (i > 0) logmag[bs - i] = 0;
Chris@4 549 break;
Chris@4 550 default:
Chris@4 551 logmag[bs/2 + i - 1] = lm;
Chris@4 552 if (i < hs-1) {
Chris@4 553 logmag[bs/2 - i - 1] = lm;
Chris@4 554 }
Chris@4 555 break;
Chris@3 556 }
Chris@3 557 }
Chris@4 558
Chris@4 559 if (m_method == InverseSymmetric ||
Chris@4 560 m_method == InverseAsymmetric) {
Chris@4 561
Chris@5 562 fft(bs, true, logmag, 0, rawcep, io);
Chris@4 563
Chris@4 564 } else {
Chris@4 565
Chris@5 566 fft(bs, false, logmag, 0, rawcep, io);
Chris@4 567
Chris@4 568 if (m_method == ForwardDifference) {
Chris@4 569 for (int i = 0; i < hs; ++i) {
Chris@5 570 rawcep[i] = fabs(io[i]) - fabs(rawcep[i]);
Chris@4 571 }
Chris@4 572 } else {
Chris@4 573 for (int i = 0; i < hs; ++i) {
Chris@5 574 rawcep[i] = sqrt(rawcep[i]*rawcep[i] + io[i]*io[i]);
Chris@4 575 }
Chris@4 576 }
Chris@4 577 }
Chris@4 578
Chris@4 579 delete[] logmag;
Chris@4 580
Chris@4 581 } else { // InverseComplex
Chris@4 582
Chris@4 583 double *ri = new double[bs];
Chris@4 584 double *ii = new double[bs];
Chris@4 585
Chris@4 586 for (int i = 0; i < hs; ++i) {
Chris@4 587 double re = inputBuffers[0][i*2];
Chris@4 588 double im = inputBuffers[0][i*2+1];
Chris@4 589 std::complex<double> c(re, im);
Chris@4 590 std::complex<double> clog = std::log(c);
Chris@4 591 ri[i] = clog.real();
Chris@4 592 ii[i] = clog.imag();
Chris@4 593 if (i > 0) {
Chris@4 594 ri[bs - i] = ri[i];
Chris@4 595 ii[bs - i] = -ii[i];
Chris@4 596 }
Chris@4 597 }
Chris@4 598
Chris@5 599 fft(bs, true, ri, ii, rawcep, io);
Chris@4 600
Chris@4 601 delete[] ri;
Chris@4 602 delete[] ii;
Chris@3 603 }
Chris@0 604
Chris@0 605 if (m_clamp) {
Chris@0 606 for (int i = 0; i < bs; ++i) {
Chris@5 607 if (rawcep[i] < 0) rawcep[i] = 0;
Chris@0 608 }
Chris@0 609 }
Chris@0 610
Chris@5 611 delete[] io;
Chris@0 612
Chris@5 613 double *latest = new double[m_bins];
Chris@5 614 filter(rawcep, latest);
Chris@5 615
Chris@5 616 int n = m_bins;
Chris@0 617
Chris@0 618 Feature cf;
Chris@5 619 for (int i = 0; i < n; ++i) {
Chris@5 620 cf.values.push_back(latest[i]);
Chris@0 621 }
Chris@0 622 fs[m_cepOutput].push_back(cf);
Chris@0 623
Chris@5 624 addStatisticalOutputs(fs, latest);
Chris@0 625
Chris@5 626 addEnvelopeOutputs(fs, inputBuffers, rawcep);
Chris@0 627
Chris@5 628 delete[] latest;
Chris@0 629
Chris@0 630 return fs;
Chris@0 631 }
Chris@0 632
Chris@0 633 SimpleCepstrum::FeatureSet
Chris@0 634 SimpleCepstrum::getRemainingFeatures()
Chris@0 635 {
Chris@0 636 FeatureSet fs;
Chris@0 637 return fs;
Chris@0 638 }
Chris@0 639
Chris@0 640 void
Chris@0 641 SimpleCepstrum::fft(unsigned int n, bool inverse,
Chris@0 642 double *ri, double *ii, double *ro, double *io)
Chris@0 643 {
Chris@0 644 if (!ri || !ro || !io) return;
Chris@0 645
Chris@0 646 unsigned int bits;
Chris@0 647 unsigned int i, j, k, m;
Chris@0 648 unsigned int blockSize, blockEnd;
Chris@0 649
Chris@0 650 double tr, ti;
Chris@0 651
Chris@0 652 if (n < 2) return;
Chris@0 653 if (n & (n-1)) return;
Chris@0 654
Chris@0 655 double angle = 2.0 * M_PI;
Chris@0 656 if (inverse) angle = -angle;
Chris@0 657
Chris@0 658 for (i = 0; ; ++i) {
Chris@0 659 if (n & (1 << i)) {
Chris@0 660 bits = i;
Chris@0 661 break;
Chris@0 662 }
Chris@0 663 }
Chris@0 664
Chris@0 665 static unsigned int tableSize = 0;
Chris@0 666 static int *table = 0;
Chris@0 667
Chris@0 668 if (tableSize != n) {
Chris@0 669
Chris@0 670 delete[] table;
Chris@0 671
Chris@0 672 table = new int[n];
Chris@0 673
Chris@0 674 for (i = 0; i < n; ++i) {
Chris@0 675
Chris@0 676 m = i;
Chris@0 677
Chris@0 678 for (j = k = 0; j < bits; ++j) {
Chris@0 679 k = (k << 1) | (m & 1);
Chris@0 680 m >>= 1;
Chris@0 681 }
Chris@0 682
Chris@0 683 table[i] = k;
Chris@0 684 }
Chris@0 685
Chris@0 686 tableSize = n;
Chris@0 687 }
Chris@0 688
Chris@0 689 if (ii) {
Chris@0 690 for (i = 0; i < n; ++i) {
Chris@0 691 ro[table[i]] = ri[i];
Chris@0 692 io[table[i]] = ii[i];
Chris@0 693 }
Chris@0 694 } else {
Chris@0 695 for (i = 0; i < n; ++i) {
Chris@0 696 ro[table[i]] = ri[i];
Chris@0 697 io[table[i]] = 0.0;
Chris@0 698 }
Chris@0 699 }
Chris@0 700
Chris@0 701 blockEnd = 1;
Chris@0 702
Chris@0 703 for (blockSize = 2; blockSize <= n; blockSize <<= 1) {
Chris@0 704
Chris@0 705 double delta = angle / (double)blockSize;
Chris@0 706 double sm2 = -sin(-2 * delta);
Chris@0 707 double sm1 = -sin(-delta);
Chris@0 708 double cm2 = cos(-2 * delta);
Chris@0 709 double cm1 = cos(-delta);
Chris@0 710 double w = 2 * cm1;
Chris@0 711 double ar[3], ai[3];
Chris@0 712
Chris@0 713 for (i = 0; i < n; i += blockSize) {
Chris@0 714
Chris@0 715 ar[2] = cm2;
Chris@0 716 ar[1] = cm1;
Chris@0 717
Chris@0 718 ai[2] = sm2;
Chris@0 719 ai[1] = sm1;
Chris@0 720
Chris@0 721 for (j = i, m = 0; m < blockEnd; j++, m++) {
Chris@0 722
Chris@0 723 ar[0] = w * ar[1] - ar[2];
Chris@0 724 ar[2] = ar[1];
Chris@0 725 ar[1] = ar[0];
Chris@0 726
Chris@0 727 ai[0] = w * ai[1] - ai[2];
Chris@0 728 ai[2] = ai[1];
Chris@0 729 ai[1] = ai[0];
Chris@0 730
Chris@0 731 k = j + blockEnd;
Chris@0 732 tr = ar[0] * ro[k] - ai[0] * io[k];
Chris@0 733 ti = ar[0] * io[k] + ai[0] * ro[k];
Chris@0 734
Chris@0 735 ro[k] = ro[j] - tr;
Chris@0 736 io[k] = io[j] - ti;
Chris@0 737
Chris@0 738 ro[j] += tr;
Chris@0 739 io[j] += ti;
Chris@0 740 }
Chris@0 741 }
Chris@0 742
Chris@0 743 blockEnd = blockSize;
Chris@0 744 }
Chris@0 745 }
Chris@0 746
Chris@0 747