Chris@0
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@7
|
2 /*
|
Chris@7
|
3 Permission is hereby granted, free of charge, to any person
|
Chris@7
|
4 obtaining a copy of this software and associated documentation
|
Chris@7
|
5 files (the "Software"), to deal in the Software without
|
Chris@7
|
6 restriction, including without limitation the rights to use, copy,
|
Chris@7
|
7 modify, merge, publish, distribute, sublicense, and/or sell copies
|
Chris@7
|
8 of the Software, and to permit persons to whom the Software is
|
Chris@7
|
9 furnished to do so, subject to the following conditions:
|
Chris@7
|
10
|
Chris@7
|
11 The above copyright notice and this permission notice shall be
|
Chris@7
|
12 included in all copies or substantial portions of the Software.
|
Chris@7
|
13
|
Chris@7
|
14 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
Chris@7
|
15 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
Chris@7
|
16 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
Chris@7
|
17 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
|
Chris@7
|
18 ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
|
Chris@7
|
19 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
Chris@7
|
20 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
Chris@7
|
21 */
|
Chris@0
|
22
|
Chris@0
|
23 #include "SimpleCepstrum.h"
|
Chris@0
|
24
|
Chris@0
|
25 #include <vector>
|
Chris@0
|
26 #include <algorithm>
|
Chris@0
|
27
|
Chris@0
|
28 #include <cstdio>
|
Chris@0
|
29 #include <cmath>
|
Chris@4
|
30 #include <complex>
|
Chris@0
|
31
|
Chris@0
|
32 using std::string;
|
Chris@0
|
33
|
Chris@0
|
34 SimpleCepstrum::SimpleCepstrum(float inputSampleRate) :
|
Chris@0
|
35 Plugin(inputSampleRate),
|
Chris@0
|
36 m_channels(0),
|
Chris@0
|
37 m_stepSize(256),
|
Chris@0
|
38 m_blockSize(1024),
|
Chris@0
|
39 m_fmin(50),
|
Chris@0
|
40 m_fmax(1000),
|
Chris@5
|
41 m_histlen(3),
|
Chris@3
|
42 m_clamp(false),
|
Chris@5
|
43 m_method(InverseSymmetric),
|
Chris@5
|
44 m_binFrom(0),
|
Chris@5
|
45 m_binTo(0),
|
Chris@5
|
46 m_bins(0),
|
Chris@5
|
47 m_history(0)
|
Chris@0
|
48 {
|
Chris@0
|
49 }
|
Chris@0
|
50
|
Chris@0
|
51 SimpleCepstrum::~SimpleCepstrum()
|
Chris@0
|
52 {
|
Chris@5
|
53 if (m_history) {
|
Chris@5
|
54 for (int i = 0; i < m_histlen; ++i) {
|
Chris@5
|
55 delete[] m_history[i];
|
Chris@5
|
56 }
|
Chris@5
|
57 delete[] m_history;
|
Chris@5
|
58 }
|
Chris@0
|
59 }
|
Chris@0
|
60
|
Chris@0
|
61 string
|
Chris@0
|
62 SimpleCepstrum::getIdentifier() const
|
Chris@0
|
63 {
|
Chris@0
|
64 return "simple-cepstrum";
|
Chris@0
|
65 }
|
Chris@0
|
66
|
Chris@0
|
67 string
|
Chris@0
|
68 SimpleCepstrum::getName() const
|
Chris@0
|
69 {
|
Chris@0
|
70 return "Simple Cepstrum";
|
Chris@0
|
71 }
|
Chris@0
|
72
|
Chris@0
|
73 string
|
Chris@0
|
74 SimpleCepstrum::getDescription() const
|
Chris@0
|
75 {
|
Chris@2
|
76 return "Return simple cepstral data from DFT bins. This plugin is intended for casual inspection of cepstral data. It returns a lot of different sorts of data and is quite slow; it's not a good way to extract a single feature rapidly.";
|
Chris@0
|
77 }
|
Chris@0
|
78
|
Chris@0
|
79 string
|
Chris@0
|
80 SimpleCepstrum::getMaker() const
|
Chris@0
|
81 {
|
Chris@7
|
82 return "Chris Cannam";
|
Chris@0
|
83 }
|
Chris@0
|
84
|
Chris@0
|
85 int
|
Chris@0
|
86 SimpleCepstrum::getPluginVersion() const
|
Chris@0
|
87 {
|
Chris@0
|
88 // Increment this each time you release a version that behaves
|
Chris@0
|
89 // differently from the previous one
|
Chris@0
|
90 return 1;
|
Chris@0
|
91 }
|
Chris@0
|
92
|
Chris@0
|
93 string
|
Chris@0
|
94 SimpleCepstrum::getCopyright() const
|
Chris@0
|
95 {
|
Chris@7
|
96 return "Freely redistributable (BSD license)";
|
Chris@0
|
97 }
|
Chris@0
|
98
|
Chris@0
|
99 SimpleCepstrum::InputDomain
|
Chris@0
|
100 SimpleCepstrum::getInputDomain() const
|
Chris@0
|
101 {
|
Chris@0
|
102 return FrequencyDomain;
|
Chris@0
|
103 }
|
Chris@0
|
104
|
Chris@0
|
105 size_t
|
Chris@0
|
106 SimpleCepstrum::getPreferredBlockSize() const
|
Chris@0
|
107 {
|
Chris@0
|
108 return 1024;
|
Chris@0
|
109 }
|
Chris@0
|
110
|
Chris@0
|
111 size_t
|
Chris@0
|
112 SimpleCepstrum::getPreferredStepSize() const
|
Chris@0
|
113 {
|
Chris@0
|
114 return 256;
|
Chris@0
|
115 }
|
Chris@0
|
116
|
Chris@0
|
117 size_t
|
Chris@0
|
118 SimpleCepstrum::getMinChannelCount() const
|
Chris@0
|
119 {
|
Chris@0
|
120 return 1;
|
Chris@0
|
121 }
|
Chris@0
|
122
|
Chris@0
|
123 size_t
|
Chris@0
|
124 SimpleCepstrum::getMaxChannelCount() const
|
Chris@0
|
125 {
|
Chris@0
|
126 return 1;
|
Chris@0
|
127 }
|
Chris@0
|
128
|
Chris@0
|
129 SimpleCepstrum::ParameterList
|
Chris@0
|
130 SimpleCepstrum::getParameterDescriptors() const
|
Chris@0
|
131 {
|
Chris@0
|
132 ParameterList list;
|
Chris@0
|
133
|
Chris@0
|
134 ParameterDescriptor d;
|
Chris@0
|
135
|
Chris@0
|
136 d.identifier = "fmin";
|
Chris@0
|
137 d.name = "Minimum frequency";
|
Chris@0
|
138 d.description = "";
|
Chris@0
|
139 d.unit = "Hz";
|
Chris@0
|
140 d.minValue = m_inputSampleRate / m_blockSize;
|
Chris@0
|
141 d.maxValue = m_inputSampleRate / 2;
|
Chris@0
|
142 d.defaultValue = 50;
|
Chris@0
|
143 d.isQuantized = false;
|
Chris@0
|
144 list.push_back(d);
|
Chris@0
|
145
|
Chris@0
|
146 d.identifier = "fmax";
|
Chris@0
|
147 d.name = "Maximum frequency";
|
Chris@0
|
148 d.description = "";
|
Chris@0
|
149 d.unit = "Hz";
|
Chris@0
|
150 d.minValue = m_inputSampleRate / m_blockSize;
|
Chris@0
|
151 d.maxValue = m_inputSampleRate / 2;
|
Chris@0
|
152 d.defaultValue = 1000;
|
Chris@0
|
153 d.isQuantized = false;
|
Chris@0
|
154 list.push_back(d);
|
Chris@0
|
155
|
Chris@5
|
156 d.identifier = "histlen";
|
Chris@5
|
157 d.name = "Mean filter history length";
|
Chris@5
|
158 d.description = "";
|
Chris@5
|
159 d.unit = "";
|
Chris@5
|
160 d.minValue = 1;
|
Chris@5
|
161 d.maxValue = 10;
|
Chris@5
|
162 d.defaultValue = 3;
|
Chris@5
|
163 d.isQuantized = true;
|
Chris@5
|
164 d.quantizeStep = 1;
|
Chris@5
|
165 list.push_back(d);
|
Chris@5
|
166
|
Chris@3
|
167 d.identifier = "method";
|
Chris@3
|
168 d.name = "Cepstrum transform method";
|
Chris@3
|
169 d.unit = "";
|
Chris@3
|
170 d.minValue = 0;
|
Chris@5
|
171 d.maxValue = 4;
|
Chris@3
|
172 d.defaultValue = 0;
|
Chris@3
|
173 d.isQuantized = true;
|
Chris@3
|
174 d.quantizeStep = 1;
|
Chris@3
|
175 d.valueNames.push_back("Inverse symmetric");
|
Chris@3
|
176 d.valueNames.push_back("Inverse asymmetric");
|
Chris@4
|
177 d.valueNames.push_back("Inverse complex");
|
Chris@3
|
178 d.valueNames.push_back("Forward magnitude");
|
Chris@3
|
179 d.valueNames.push_back("Forward difference");
|
Chris@3
|
180 list.push_back(d);
|
Chris@3
|
181
|
Chris@0
|
182 return list;
|
Chris@0
|
183 }
|
Chris@0
|
184
|
Chris@0
|
185 float
|
Chris@0
|
186 SimpleCepstrum::getParameter(string identifier) const
|
Chris@0
|
187 {
|
Chris@0
|
188 if (identifier == "fmin") return m_fmin;
|
Chris@0
|
189 else if (identifier == "fmax") return m_fmax;
|
Chris@5
|
190 else if (identifier == "histlen") return m_histlen;
|
Chris@3
|
191 else if (identifier == "method") return (int)m_method;
|
Chris@0
|
192 else return 0.f;
|
Chris@0
|
193 }
|
Chris@0
|
194
|
Chris@0
|
195 void
|
Chris@0
|
196 SimpleCepstrum::setParameter(string identifier, float value)
|
Chris@0
|
197 {
|
Chris@0
|
198 if (identifier == "fmin") m_fmin = value;
|
Chris@0
|
199 else if (identifier == "fmax") m_fmax = value;
|
Chris@5
|
200 else if (identifier == "histlen") m_histlen = value;
|
Chris@3
|
201 else if (identifier == "method") m_method = Method(int(value + 0.5));
|
Chris@0
|
202 }
|
Chris@0
|
203
|
Chris@0
|
204 SimpleCepstrum::ProgramList
|
Chris@0
|
205 SimpleCepstrum::getPrograms() const
|
Chris@0
|
206 {
|
Chris@0
|
207 ProgramList list;
|
Chris@0
|
208 return list;
|
Chris@0
|
209 }
|
Chris@0
|
210
|
Chris@0
|
211 string
|
Chris@0
|
212 SimpleCepstrum::getCurrentProgram() const
|
Chris@0
|
213 {
|
Chris@0
|
214 return ""; // no programs
|
Chris@0
|
215 }
|
Chris@0
|
216
|
Chris@0
|
217 void
|
Chris@0
|
218 SimpleCepstrum::selectProgram(string name)
|
Chris@0
|
219 {
|
Chris@0
|
220 }
|
Chris@0
|
221
|
Chris@0
|
222 SimpleCepstrum::OutputList
|
Chris@0
|
223 SimpleCepstrum::getOutputDescriptors() const
|
Chris@0
|
224 {
|
Chris@0
|
225 OutputList outputs;
|
Chris@0
|
226
|
Chris@0
|
227 int n = 0;
|
Chris@0
|
228
|
Chris@0
|
229 OutputDescriptor d;
|
Chris@2
|
230
|
Chris@7
|
231 d.identifier = "raw_cepstral_peak";
|
Chris@7
|
232 d.name = "Frequency corresponding to raw cepstral peak";
|
Chris@7
|
233 d.description = "Return the frequency whose period corresponds to the quefrency with the maximum value within the specified range of the cepstrum";
|
Chris@6
|
234 d.unit = "Hz";
|
Chris@0
|
235 d.hasFixedBinCount = true;
|
Chris@0
|
236 d.binCount = 1;
|
Chris@0
|
237 d.hasKnownExtents = true;
|
Chris@0
|
238 d.minValue = m_fmin;
|
Chris@0
|
239 d.maxValue = m_fmax;
|
Chris@0
|
240 d.isQuantized = false;
|
Chris@0
|
241 d.sampleType = OutputDescriptor::OneSamplePerStep;
|
Chris@0
|
242 d.hasDuration = false;
|
Chris@5
|
243 m_pkOutput = n++;
|
Chris@0
|
244 outputs.push_back(d);
|
Chris@0
|
245
|
Chris@0
|
246 d.identifier = "variance";
|
Chris@0
|
247 d.name = "Variance of cepstral bins in range";
|
Chris@0
|
248 d.unit = "";
|
Chris@2
|
249 d.description = "Return the variance of bin values within the specified range of the cepstrum";
|
Chris@6
|
250 d.hasKnownExtents = false;
|
Chris@0
|
251 m_varOutput = n++;
|
Chris@0
|
252 outputs.push_back(d);
|
Chris@0
|
253
|
Chris@0
|
254 d.identifier = "peak";
|
Chris@8
|
255 d.name = "Value at peak";
|
Chris@0
|
256 d.unit = "";
|
Chris@2
|
257 d.description = "Return the value found in the maximum-valued bin within the specified range of the cepstrum";
|
Chris@0
|
258 m_pvOutput = n++;
|
Chris@0
|
259 outputs.push_back(d);
|
Chris@0
|
260
|
Chris@5
|
261 d.identifier = "peak_to_rms";
|
Chris@5
|
262 d.name = "Peak-to-RMS distance";
|
Chris@5
|
263 d.unit = "";
|
Chris@5
|
264 d.description = "Return the difference between maximum and root mean square bin values within the specified range of the cepstrum";
|
Chris@5
|
265 m_p2rOutput = n++;
|
Chris@5
|
266 outputs.push_back(d);
|
Chris@5
|
267
|
Chris@6
|
268 d.identifier = "peak_proportion";
|
Chris@7
|
269 d.name = "Energy around peak";
|
Chris@6
|
270 d.unit = "";
|
Chris@7
|
271 d.description = "Return the proportion of total energy that is found in the bins around the peak bin (as far as the nearest local minima), within the specified range of the cepstrum";
|
Chris@6
|
272 m_ppOutput = n++;
|
Chris@6
|
273 outputs.push_back(d);
|
Chris@6
|
274
|
Chris@6
|
275 d.identifier = "total";
|
Chris@6
|
276 d.name = "Total energy";
|
Chris@6
|
277 d.unit = "";
|
Chris@7
|
278 d.description = "Return the total energy found in all bins within the specified range of the cepstrum";
|
Chris@6
|
279 m_totOutput = n++;
|
Chris@6
|
280 outputs.push_back(d);
|
Chris@6
|
281
|
Chris@0
|
282 d.identifier = "cepstrum";
|
Chris@0
|
283 d.name = "Cepstrum";
|
Chris@0
|
284 d.unit = "";
|
Chris@2
|
285 d.description = "The unprocessed cepstrum bins within the specified range";
|
Chris@0
|
286
|
Chris@0
|
287 int from = int(m_inputSampleRate / m_fmax);
|
Chris@0
|
288 int to = int(m_inputSampleRate / m_fmin);
|
Chris@0
|
289 if (to >= (int)m_blockSize / 2) {
|
Chris@0
|
290 to = m_blockSize / 2 - 1;
|
Chris@0
|
291 }
|
Chris@0
|
292 d.binCount = to - from + 1;
|
Chris@0
|
293 for (int i = from; i <= to; ++i) {
|
Chris@0
|
294 float freq = m_inputSampleRate / i;
|
Chris@5
|
295 char buffer[20];
|
Chris@2
|
296 sprintf(buffer, "%.2f Hz", freq);
|
Chris@0
|
297 d.binNames.push_back(buffer);
|
Chris@0
|
298 }
|
Chris@0
|
299
|
Chris@0
|
300 d.hasKnownExtents = false;
|
Chris@0
|
301 m_cepOutput = n++;
|
Chris@0
|
302 outputs.push_back(d);
|
Chris@0
|
303
|
Chris@0
|
304 d.identifier = "am";
|
Chris@5
|
305 d.name = "Cepstrum bins relative to RMS";
|
Chris@5
|
306 d.description = "The cepstrum bins within the specified range, expressed as a value relative to the root mean square bin value in the range, with values below the RMS clamped to zero";
|
Chris@0
|
307 m_amOutput = n++;
|
Chris@0
|
308 outputs.push_back(d);
|
Chris@0
|
309
|
Chris@2
|
310 d.identifier = "env";
|
Chris@2
|
311 d.name = "Spectral envelope";
|
Chris@2
|
312 d.description = "Envelope calculated from the cepstral values below the specified minimum";
|
Chris@2
|
313 d.binCount = m_blockSize/2 + 1;
|
Chris@2
|
314 d.binNames.clear();
|
Chris@7
|
315 for (int i = 0; i < (int)d.binCount; ++i) {
|
Chris@2
|
316 float freq = (m_inputSampleRate / m_blockSize) * i;
|
Chris@5
|
317 char buffer[20];
|
Chris@2
|
318 sprintf(buffer, "%.2f Hz", freq);
|
Chris@2
|
319 d.binNames.push_back(buffer);
|
Chris@2
|
320 }
|
Chris@2
|
321 m_envOutput = n++;
|
Chris@2
|
322 outputs.push_back(d);
|
Chris@2
|
323
|
Chris@2
|
324 d.identifier = "es";
|
Chris@2
|
325 d.name = "Spectrum without envelope";
|
Chris@2
|
326 d.description = "Magnitude of spectrum values divided by calculated envelope values, to deconvolve the envelope";
|
Chris@2
|
327 m_esOutput = n++;
|
Chris@2
|
328 outputs.push_back(d);
|
Chris@2
|
329
|
Chris@0
|
330 return outputs;
|
Chris@0
|
331 }
|
Chris@0
|
332
|
Chris@0
|
333 bool
|
Chris@0
|
334 SimpleCepstrum::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
Chris@0
|
335 {
|
Chris@0
|
336 if (channels < getMinChannelCount() ||
|
Chris@0
|
337 channels > getMaxChannelCount()) return false;
|
Chris@0
|
338
|
Chris@0
|
339 // std::cerr << "SimpleCepstrum::initialise: channels = " << channels
|
Chris@0
|
340 // << ", stepSize = " << stepSize << ", blockSize = " << blockSize
|
Chris@0
|
341 // << std::endl;
|
Chris@0
|
342
|
Chris@0
|
343 m_channels = channels;
|
Chris@0
|
344 m_stepSize = stepSize;
|
Chris@0
|
345 m_blockSize = blockSize;
|
Chris@0
|
346
|
Chris@5
|
347 m_binFrom = int(m_inputSampleRate / m_fmax);
|
Chris@5
|
348 m_binTo = int(m_inputSampleRate / m_fmin);
|
Chris@5
|
349
|
Chris@7
|
350 if (m_binTo >= (int)m_blockSize / 2) {
|
Chris@5
|
351 m_binTo = m_blockSize / 2 - 1;
|
Chris@5
|
352 }
|
Chris@5
|
353
|
Chris@5
|
354 m_bins = (m_binTo - m_binFrom) + 1;
|
Chris@5
|
355
|
Chris@5
|
356 m_history = new double *[m_histlen];
|
Chris@5
|
357 for (int i = 0; i < m_histlen; ++i) {
|
Chris@5
|
358 m_history[i] = new double[m_bins];
|
Chris@5
|
359 }
|
Chris@5
|
360
|
Chris@5
|
361 reset();
|
Chris@5
|
362
|
Chris@0
|
363 return true;
|
Chris@0
|
364 }
|
Chris@0
|
365
|
Chris@0
|
366 void
|
Chris@0
|
367 SimpleCepstrum::reset()
|
Chris@0
|
368 {
|
Chris@5
|
369 for (int i = 0; i < m_histlen; ++i) {
|
Chris@5
|
370 for (int j = 0; j < m_bins; ++j) {
|
Chris@5
|
371 m_history[i][j] = 0.0;
|
Chris@5
|
372 }
|
Chris@5
|
373 }
|
Chris@5
|
374 }
|
Chris@5
|
375
|
Chris@5
|
376 void
|
Chris@5
|
377 SimpleCepstrum::filter(const double *cep, double *result)
|
Chris@5
|
378 {
|
Chris@5
|
379 int hix = m_histlen - 1; // current history index
|
Chris@5
|
380
|
Chris@5
|
381 // roll back the history
|
Chris@5
|
382 if (m_histlen > 1) {
|
Chris@5
|
383 double *oldest = m_history[0];
|
Chris@5
|
384 for (int i = 1; i < m_histlen; ++i) {
|
Chris@5
|
385 m_history[i-1] = m_history[i];
|
Chris@5
|
386 }
|
Chris@5
|
387 // and stick this back in the newest spot, to recycle
|
Chris@5
|
388 m_history[hix] = oldest;
|
Chris@5
|
389 }
|
Chris@5
|
390
|
Chris@5
|
391 for (int i = 0; i < m_bins; ++i) {
|
Chris@5
|
392 m_history[hix][i] = cep[i + m_binFrom];
|
Chris@5
|
393 }
|
Chris@5
|
394
|
Chris@5
|
395 for (int i = 0; i < m_bins; ++i) {
|
Chris@5
|
396 double mean = 0.0;
|
Chris@5
|
397 for (int j = 0; j < m_histlen; ++j) {
|
Chris@5
|
398 mean += m_history[j][i];
|
Chris@5
|
399 }
|
Chris@5
|
400 mean /= m_histlen;
|
Chris@5
|
401 result[i] = mean;
|
Chris@5
|
402 }
|
Chris@5
|
403 }
|
Chris@5
|
404
|
Chris@5
|
405 void
|
Chris@5
|
406 SimpleCepstrum::addStatisticalOutputs(FeatureSet &fs, const double *data)
|
Chris@5
|
407 {
|
Chris@5
|
408 int n = m_bins;
|
Chris@5
|
409
|
Chris@6
|
410 double maxval = 0.0;
|
Chris@5
|
411 int maxbin = 0;
|
Chris@5
|
412
|
Chris@5
|
413 for (int i = 0; i < n; ++i) {
|
Chris@5
|
414 if (data[i] > maxval) {
|
Chris@5
|
415 maxval = data[i];
|
Chris@6
|
416 maxbin = i;
|
Chris@5
|
417 }
|
Chris@5
|
418 }
|
Chris@5
|
419
|
Chris@5
|
420 Feature rf;
|
Chris@6
|
421 if (maxval > 0.0) {
|
Chris@6
|
422 rf.values.push_back(m_inputSampleRate / (maxbin + m_binFrom));
|
Chris@5
|
423 } else {
|
Chris@5
|
424 rf.values.push_back(0);
|
Chris@5
|
425 }
|
Chris@5
|
426 fs[m_pkOutput].push_back(rf);
|
Chris@5
|
427
|
Chris@6
|
428 double total = 0;
|
Chris@5
|
429 for (int i = 0; i < n; ++i) {
|
Chris@6
|
430 total += data[i];
|
Chris@5
|
431 }
|
Chris@5
|
432
|
Chris@6
|
433 Feature tot;
|
Chris@6
|
434 tot.values.push_back(total);
|
Chris@6
|
435 fs[m_totOutput].push_back(tot);
|
Chris@6
|
436
|
Chris@6
|
437 double mean = total / n;
|
Chris@6
|
438
|
Chris@6
|
439 double totsqr = 0;
|
Chris@8
|
440 double abstot = 0;
|
Chris@5
|
441 for (int i = 0; i < n; ++i) {
|
Chris@6
|
442 totsqr += data[i] * data[i];
|
Chris@8
|
443 abstot += fabs(data[i]);
|
Chris@5
|
444 }
|
Chris@6
|
445 double rms = sqrt(totsqr / n);
|
Chris@5
|
446
|
Chris@5
|
447 double variance = 0;
|
Chris@5
|
448 for (int i = 0; i < n; ++i) {
|
Chris@5
|
449 double dev = fabs(data[i] - mean);
|
Chris@5
|
450 variance += dev * dev;
|
Chris@5
|
451 }
|
Chris@5
|
452 variance /= n;
|
Chris@5
|
453
|
Chris@6
|
454 double aroundPeak = 0.0;
|
Chris@6
|
455 double peakProportion = 0.0;
|
Chris@6
|
456 if (maxval > 0.0) {
|
Chris@7
|
457 aroundPeak += fabs(maxval);
|
Chris@6
|
458 int i = maxbin - 1;
|
Chris@6
|
459 while (i > 0 && data[i] <= data[i+1]) {
|
Chris@7
|
460 aroundPeak += fabs(data[i]);
|
Chris@6
|
461 --i;
|
Chris@6
|
462 }
|
Chris@6
|
463 i = maxbin + 1;
|
Chris@6
|
464 while (i < n && data[i] <= data[i-1]) {
|
Chris@7
|
465 aroundPeak += fabs(data[i]);
|
Chris@6
|
466 ++i;
|
Chris@6
|
467 }
|
Chris@6
|
468 }
|
Chris@8
|
469 peakProportion = aroundPeak / abstot;
|
Chris@6
|
470 Feature pp;
|
Chris@6
|
471 pp.values.push_back(peakProportion);
|
Chris@6
|
472 fs[m_ppOutput].push_back(pp);
|
Chris@6
|
473
|
Chris@5
|
474 Feature vf;
|
Chris@5
|
475 vf.values.push_back(variance);
|
Chris@5
|
476 fs[m_varOutput].push_back(vf);
|
Chris@5
|
477
|
Chris@5
|
478 Feature pr;
|
Chris@5
|
479 pr.values.push_back(maxval - rms);
|
Chris@5
|
480 fs[m_p2rOutput].push_back(pr);
|
Chris@5
|
481
|
Chris@5
|
482 Feature pv;
|
Chris@5
|
483 pv.values.push_back(maxval);
|
Chris@5
|
484 fs[m_pvOutput].push_back(pv);
|
Chris@5
|
485
|
Chris@5
|
486 Feature am;
|
Chris@5
|
487 for (int i = 0; i < n; ++i) {
|
Chris@5
|
488 if (data[i] < rms) am.values.push_back(0);
|
Chris@5
|
489 else am.values.push_back(data[i] - rms);
|
Chris@5
|
490 }
|
Chris@5
|
491 fs[m_amOutput].push_back(am);
|
Chris@5
|
492 }
|
Chris@5
|
493
|
Chris@5
|
494 void
|
Chris@5
|
495 SimpleCepstrum::addEnvelopeOutputs(FeatureSet &fs, const float *const *inputBuffers, const double *cep)
|
Chris@5
|
496 {
|
Chris@5
|
497 // Wipe the higher cepstral bins in order to calculate the
|
Chris@5
|
498 // envelope. This calculation uses the raw cepstrum, not the
|
Chris@5
|
499 // filtered values (because only values "in frequency range" are
|
Chris@5
|
500 // filtered).
|
Chris@5
|
501 int bs = m_blockSize;
|
Chris@5
|
502 int hs = m_blockSize/2 + 1;
|
Chris@5
|
503
|
Chris@5
|
504 double *ecep = new double[bs];
|
Chris@5
|
505 for (int i = 0; i < m_binFrom; ++i) {
|
Chris@5
|
506 ecep[i] = cep[i] / bs;
|
Chris@5
|
507 }
|
Chris@5
|
508 for (int i = m_binFrom; i < bs; ++i) {
|
Chris@5
|
509 ecep[i] = 0;
|
Chris@5
|
510 }
|
Chris@5
|
511 ecep[0] /= 2;
|
Chris@5
|
512 ecep[m_binFrom-1] /= 2;
|
Chris@5
|
513
|
Chris@5
|
514 double *env = new double[bs];
|
Chris@5
|
515 double *io = new double[bs];
|
Chris@7
|
516
|
Chris@7
|
517 //!!! This is only right if the previous transform was an inverse one!
|
Chris@5
|
518 fft(bs, false, ecep, 0, env, io);
|
Chris@5
|
519
|
Chris@5
|
520 for (int i = 0; i < hs; ++i) {
|
Chris@5
|
521 env[i] = exp(env[i]);
|
Chris@5
|
522 }
|
Chris@5
|
523 Feature envf;
|
Chris@5
|
524 for (int i = 0; i < hs; ++i) {
|
Chris@5
|
525 envf.values.push_back(env[i]);
|
Chris@5
|
526 }
|
Chris@5
|
527 fs[m_envOutput].push_back(envf);
|
Chris@5
|
528
|
Chris@5
|
529 Feature es;
|
Chris@5
|
530 for (int i = 0; i < hs; ++i) {
|
Chris@5
|
531 double re = inputBuffers[0][i*2 ] / env[i];
|
Chris@5
|
532 double im = inputBuffers[0][i*2+1] / env[i];
|
Chris@5
|
533 double mag = sqrt(re*re + im*im);
|
Chris@5
|
534 es.values.push_back(mag);
|
Chris@5
|
535 }
|
Chris@5
|
536 fs[m_esOutput].push_back(es);
|
Chris@5
|
537
|
Chris@5
|
538 delete[] env;
|
Chris@5
|
539 delete[] ecep;
|
Chris@5
|
540 delete[] io;
|
Chris@0
|
541 }
|
Chris@0
|
542
|
Chris@0
|
543 SimpleCepstrum::FeatureSet
|
Chris@0
|
544 SimpleCepstrum::process(const float *const *inputBuffers, Vamp::RealTime timestamp)
|
Chris@0
|
545 {
|
Chris@1
|
546 FeatureSet fs;
|
Chris@1
|
547
|
Chris@0
|
548 int bs = m_blockSize;
|
Chris@0
|
549 int hs = m_blockSize/2 + 1;
|
Chris@0
|
550
|
Chris@5
|
551 double *rawcep = new double[bs];
|
Chris@3
|
552 double *io = new double[bs];
|
Chris@3
|
553
|
Chris@4
|
554 if (m_method != InverseComplex) {
|
Chris@3
|
555
|
Chris@4
|
556 double *logmag = new double[bs];
|
Chris@4
|
557
|
Chris@4
|
558 for (int i = 0; i < hs; ++i) {
|
Chris@3
|
559
|
Chris@4
|
560 double power =
|
Chris@4
|
561 inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] +
|
Chris@4
|
562 inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1];
|
Chris@5
|
563 double mag = sqrt(power);
|
Chris@3
|
564
|
Chris@5
|
565 double lm = log(mag + 0.00000001);
|
Chris@4
|
566
|
Chris@4
|
567 switch (m_method) {
|
Chris@4
|
568 case InverseSymmetric:
|
Chris@4
|
569 logmag[i] = lm;
|
Chris@4
|
570 if (i > 0) logmag[bs - i] = lm;
|
Chris@4
|
571 break;
|
Chris@4
|
572 case InverseAsymmetric:
|
Chris@4
|
573 logmag[i] = lm;
|
Chris@4
|
574 if (i > 0) logmag[bs - i] = 0;
|
Chris@4
|
575 break;
|
Chris@4
|
576 default:
|
Chris@4
|
577 logmag[bs/2 + i - 1] = lm;
|
Chris@4
|
578 if (i < hs-1) {
|
Chris@4
|
579 logmag[bs/2 - i - 1] = lm;
|
Chris@4
|
580 }
|
Chris@4
|
581 break;
|
Chris@3
|
582 }
|
Chris@3
|
583 }
|
Chris@4
|
584
|
Chris@4
|
585 if (m_method == InverseSymmetric ||
|
Chris@4
|
586 m_method == InverseAsymmetric) {
|
Chris@4
|
587
|
Chris@5
|
588 fft(bs, true, logmag, 0, rawcep, io);
|
Chris@4
|
589
|
Chris@4
|
590 } else {
|
Chris@4
|
591
|
Chris@5
|
592 fft(bs, false, logmag, 0, rawcep, io);
|
Chris@4
|
593
|
Chris@4
|
594 if (m_method == ForwardDifference) {
|
Chris@4
|
595 for (int i = 0; i < hs; ++i) {
|
Chris@5
|
596 rawcep[i] = fabs(io[i]) - fabs(rawcep[i]);
|
Chris@4
|
597 }
|
Chris@4
|
598 } else {
|
Chris@4
|
599 for (int i = 0; i < hs; ++i) {
|
Chris@5
|
600 rawcep[i] = sqrt(rawcep[i]*rawcep[i] + io[i]*io[i]);
|
Chris@4
|
601 }
|
Chris@4
|
602 }
|
Chris@4
|
603 }
|
Chris@4
|
604
|
Chris@4
|
605 delete[] logmag;
|
Chris@4
|
606
|
Chris@4
|
607 } else { // InverseComplex
|
Chris@4
|
608
|
Chris@4
|
609 double *ri = new double[bs];
|
Chris@4
|
610 double *ii = new double[bs];
|
Chris@4
|
611
|
Chris@4
|
612 for (int i = 0; i < hs; ++i) {
|
Chris@4
|
613 double re = inputBuffers[0][i*2];
|
Chris@4
|
614 double im = inputBuffers[0][i*2+1];
|
Chris@4
|
615 std::complex<double> c(re, im);
|
Chris@4
|
616 std::complex<double> clog = std::log(c);
|
Chris@4
|
617 ri[i] = clog.real();
|
Chris@4
|
618 ii[i] = clog.imag();
|
Chris@4
|
619 if (i > 0) {
|
Chris@4
|
620 ri[bs - i] = ri[i];
|
Chris@4
|
621 ii[bs - i] = -ii[i];
|
Chris@4
|
622 }
|
Chris@4
|
623 }
|
Chris@4
|
624
|
Chris@5
|
625 fft(bs, true, ri, ii, rawcep, io);
|
Chris@4
|
626
|
Chris@4
|
627 delete[] ri;
|
Chris@4
|
628 delete[] ii;
|
Chris@3
|
629 }
|
Chris@0
|
630
|
Chris@0
|
631 if (m_clamp) {
|
Chris@0
|
632 for (int i = 0; i < bs; ++i) {
|
Chris@5
|
633 if (rawcep[i] < 0) rawcep[i] = 0;
|
Chris@0
|
634 }
|
Chris@0
|
635 }
|
Chris@0
|
636
|
Chris@5
|
637 delete[] io;
|
Chris@0
|
638
|
Chris@5
|
639 double *latest = new double[m_bins];
|
Chris@5
|
640 filter(rawcep, latest);
|
Chris@5
|
641
|
Chris@5
|
642 int n = m_bins;
|
Chris@0
|
643
|
Chris@0
|
644 Feature cf;
|
Chris@5
|
645 for (int i = 0; i < n; ++i) {
|
Chris@5
|
646 cf.values.push_back(latest[i]);
|
Chris@0
|
647 }
|
Chris@0
|
648 fs[m_cepOutput].push_back(cf);
|
Chris@0
|
649
|
Chris@5
|
650 addStatisticalOutputs(fs, latest);
|
Chris@0
|
651
|
Chris@5
|
652 addEnvelopeOutputs(fs, inputBuffers, rawcep);
|
Chris@0
|
653
|
Chris@5
|
654 delete[] latest;
|
Chris@7
|
655 delete[] rawcep;
|
Chris@0
|
656
|
Chris@0
|
657 return fs;
|
Chris@0
|
658 }
|
Chris@0
|
659
|
Chris@0
|
660 SimpleCepstrum::FeatureSet
|
Chris@0
|
661 SimpleCepstrum::getRemainingFeatures()
|
Chris@0
|
662 {
|
Chris@0
|
663 FeatureSet fs;
|
Chris@0
|
664 return fs;
|
Chris@0
|
665 }
|
Chris@0
|
666
|
Chris@0
|
667 void
|
Chris@0
|
668 SimpleCepstrum::fft(unsigned int n, bool inverse,
|
Chris@0
|
669 double *ri, double *ii, double *ro, double *io)
|
Chris@0
|
670 {
|
Chris@0
|
671 if (!ri || !ro || !io) return;
|
Chris@0
|
672
|
Chris@0
|
673 unsigned int bits;
|
Chris@0
|
674 unsigned int i, j, k, m;
|
Chris@0
|
675 unsigned int blockSize, blockEnd;
|
Chris@0
|
676
|
Chris@0
|
677 double tr, ti;
|
Chris@0
|
678
|
Chris@0
|
679 if (n < 2) return;
|
Chris@0
|
680 if (n & (n-1)) return;
|
Chris@0
|
681
|
Chris@0
|
682 double angle = 2.0 * M_PI;
|
Chris@0
|
683 if (inverse) angle = -angle;
|
Chris@0
|
684
|
Chris@0
|
685 for (i = 0; ; ++i) {
|
Chris@0
|
686 if (n & (1 << i)) {
|
Chris@0
|
687 bits = i;
|
Chris@0
|
688 break;
|
Chris@0
|
689 }
|
Chris@0
|
690 }
|
Chris@0
|
691
|
Chris@0
|
692 static unsigned int tableSize = 0;
|
Chris@0
|
693 static int *table = 0;
|
Chris@0
|
694
|
Chris@0
|
695 if (tableSize != n) {
|
Chris@0
|
696
|
Chris@0
|
697 delete[] table;
|
Chris@0
|
698
|
Chris@0
|
699 table = new int[n];
|
Chris@0
|
700
|
Chris@0
|
701 for (i = 0; i < n; ++i) {
|
Chris@0
|
702
|
Chris@0
|
703 m = i;
|
Chris@0
|
704
|
Chris@0
|
705 for (j = k = 0; j < bits; ++j) {
|
Chris@0
|
706 k = (k << 1) | (m & 1);
|
Chris@0
|
707 m >>= 1;
|
Chris@0
|
708 }
|
Chris@0
|
709
|
Chris@0
|
710 table[i] = k;
|
Chris@0
|
711 }
|
Chris@0
|
712
|
Chris@0
|
713 tableSize = n;
|
Chris@0
|
714 }
|
Chris@0
|
715
|
Chris@0
|
716 if (ii) {
|
Chris@0
|
717 for (i = 0; i < n; ++i) {
|
Chris@0
|
718 ro[table[i]] = ri[i];
|
Chris@0
|
719 io[table[i]] = ii[i];
|
Chris@0
|
720 }
|
Chris@0
|
721 } else {
|
Chris@0
|
722 for (i = 0; i < n; ++i) {
|
Chris@0
|
723 ro[table[i]] = ri[i];
|
Chris@0
|
724 io[table[i]] = 0.0;
|
Chris@0
|
725 }
|
Chris@0
|
726 }
|
Chris@0
|
727
|
Chris@0
|
728 blockEnd = 1;
|
Chris@0
|
729
|
Chris@0
|
730 for (blockSize = 2; blockSize <= n; blockSize <<= 1) {
|
Chris@0
|
731
|
Chris@0
|
732 double delta = angle / (double)blockSize;
|
Chris@0
|
733 double sm2 = -sin(-2 * delta);
|
Chris@0
|
734 double sm1 = -sin(-delta);
|
Chris@0
|
735 double cm2 = cos(-2 * delta);
|
Chris@0
|
736 double cm1 = cos(-delta);
|
Chris@0
|
737 double w = 2 * cm1;
|
Chris@0
|
738 double ar[3], ai[3];
|
Chris@0
|
739
|
Chris@0
|
740 for (i = 0; i < n; i += blockSize) {
|
Chris@0
|
741
|
Chris@0
|
742 ar[2] = cm2;
|
Chris@0
|
743 ar[1] = cm1;
|
Chris@0
|
744
|
Chris@0
|
745 ai[2] = sm2;
|
Chris@0
|
746 ai[1] = sm1;
|
Chris@0
|
747
|
Chris@0
|
748 for (j = i, m = 0; m < blockEnd; j++, m++) {
|
Chris@0
|
749
|
Chris@0
|
750 ar[0] = w * ar[1] - ar[2];
|
Chris@0
|
751 ar[2] = ar[1];
|
Chris@0
|
752 ar[1] = ar[0];
|
Chris@0
|
753
|
Chris@0
|
754 ai[0] = w * ai[1] - ai[2];
|
Chris@0
|
755 ai[2] = ai[1];
|
Chris@0
|
756 ai[1] = ai[0];
|
Chris@0
|
757
|
Chris@0
|
758 k = j + blockEnd;
|
Chris@0
|
759 tr = ar[0] * ro[k] - ai[0] * io[k];
|
Chris@0
|
760 ti = ar[0] * io[k] + ai[0] * ro[k];
|
Chris@0
|
761
|
Chris@0
|
762 ro[k] = ro[j] - tr;
|
Chris@0
|
763 io[k] = io[j] - ti;
|
Chris@0
|
764
|
Chris@0
|
765 ro[j] += tr;
|
Chris@0
|
766 io[j] += ti;
|
Chris@0
|
767 }
|
Chris@0
|
768 }
|
Chris@0
|
769
|
Chris@0
|
770 blockEnd = blockSize;
|
Chris@0
|
771 }
|
Chris@0
|
772 }
|
Chris@0
|
773
|
Chris@0
|
774
|