Chris@0
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@7
|
2 /*
|
Chris@38
|
3 This file is Copyright (c) 2012 Chris Cannam
|
Chris@38
|
4
|
Chris@7
|
5 Permission is hereby granted, free of charge, to any person
|
Chris@7
|
6 obtaining a copy of this software and associated documentation
|
Chris@7
|
7 files (the "Software"), to deal in the Software without
|
Chris@7
|
8 restriction, including without limitation the rights to use, copy,
|
Chris@7
|
9 modify, merge, publish, distribute, sublicense, and/or sell copies
|
Chris@7
|
10 of the Software, and to permit persons to whom the Software is
|
Chris@7
|
11 furnished to do so, subject to the following conditions:
|
Chris@7
|
12
|
Chris@7
|
13 The above copyright notice and this permission notice shall be
|
Chris@7
|
14 included in all copies or substantial portions of the Software.
|
Chris@7
|
15
|
Chris@7
|
16 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
Chris@7
|
17 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
Chris@7
|
18 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
Chris@7
|
19 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
|
Chris@7
|
20 ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
|
Chris@7
|
21 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
Chris@7
|
22 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
Chris@7
|
23 */
|
Chris@0
|
24
|
Chris@0
|
25 #include "SimpleCepstrum.h"
|
Chris@0
|
26
|
Chris@33
|
27 #include "vamp-sdk/FFT.h"
|
Chris@33
|
28
|
Chris@0
|
29 #include <vector>
|
Chris@0
|
30 #include <algorithm>
|
Chris@0
|
31
|
Chris@0
|
32 #include <cstdio>
|
Chris@0
|
33 #include <cmath>
|
Chris@4
|
34 #include <complex>
|
Chris@0
|
35
|
Chris@33
|
36 #if ( VAMP_SDK_MAJOR_VERSION < 2 || ( VAMP_SDK_MAJOR_VERSION == 2 && VAMP_SDK_MINOR_VERSION < 4 ) )
|
Chris@33
|
37 #error Vamp SDK version 2.4 or newer required
|
Chris@33
|
38 #endif
|
Chris@33
|
39
|
Chris@0
|
40 using std::string;
|
Chris@0
|
41
|
Chris@0
|
42 SimpleCepstrum::SimpleCepstrum(float inputSampleRate) :
|
Chris@0
|
43 Plugin(inputSampleRate),
|
Chris@0
|
44 m_channels(0),
|
Chris@0
|
45 m_stepSize(256),
|
Chris@0
|
46 m_blockSize(1024),
|
Chris@0
|
47 m_fmin(50),
|
Chris@0
|
48 m_fmax(1000),
|
Chris@10
|
49 m_histlen(1),
|
Chris@10
|
50 m_vflen(1),
|
Chris@3
|
51 m_clamp(false),
|
Chris@5
|
52 m_method(InverseSymmetric),
|
Chris@5
|
53 m_binFrom(0),
|
Chris@5
|
54 m_binTo(0),
|
Chris@5
|
55 m_bins(0),
|
Chris@5
|
56 m_history(0)
|
Chris@0
|
57 {
|
Chris@0
|
58 }
|
Chris@0
|
59
|
Chris@0
|
60 SimpleCepstrum::~SimpleCepstrum()
|
Chris@0
|
61 {
|
Chris@5
|
62 if (m_history) {
|
Chris@5
|
63 for (int i = 0; i < m_histlen; ++i) {
|
Chris@5
|
64 delete[] m_history[i];
|
Chris@5
|
65 }
|
Chris@5
|
66 delete[] m_history;
|
Chris@5
|
67 }
|
Chris@0
|
68 }
|
Chris@0
|
69
|
Chris@0
|
70 string
|
Chris@0
|
71 SimpleCepstrum::getIdentifier() const
|
Chris@0
|
72 {
|
Chris@0
|
73 return "simple-cepstrum";
|
Chris@0
|
74 }
|
Chris@0
|
75
|
Chris@0
|
76 string
|
Chris@0
|
77 SimpleCepstrum::getName() const
|
Chris@0
|
78 {
|
Chris@0
|
79 return "Simple Cepstrum";
|
Chris@0
|
80 }
|
Chris@0
|
81
|
Chris@0
|
82 string
|
Chris@0
|
83 SimpleCepstrum::getDescription() const
|
Chris@0
|
84 {
|
Chris@2
|
85 return "Return simple cepstral data from DFT bins. This plugin is intended for casual inspection of cepstral data. It returns a lot of different sorts of data and is quite slow; it's not a good way to extract a single feature rapidly.";
|
Chris@0
|
86 }
|
Chris@0
|
87
|
Chris@0
|
88 string
|
Chris@0
|
89 SimpleCepstrum::getMaker() const
|
Chris@0
|
90 {
|
Chris@7
|
91 return "Chris Cannam";
|
Chris@0
|
92 }
|
Chris@0
|
93
|
Chris@0
|
94 int
|
Chris@0
|
95 SimpleCepstrum::getPluginVersion() const
|
Chris@0
|
96 {
|
Chris@0
|
97 // Increment this each time you release a version that behaves
|
Chris@0
|
98 // differently from the previous one
|
Chris@0
|
99 return 1;
|
Chris@0
|
100 }
|
Chris@0
|
101
|
Chris@0
|
102 string
|
Chris@0
|
103 SimpleCepstrum::getCopyright() const
|
Chris@0
|
104 {
|
Chris@7
|
105 return "Freely redistributable (BSD license)";
|
Chris@0
|
106 }
|
Chris@0
|
107
|
Chris@0
|
108 SimpleCepstrum::InputDomain
|
Chris@0
|
109 SimpleCepstrum::getInputDomain() const
|
Chris@0
|
110 {
|
Chris@0
|
111 return FrequencyDomain;
|
Chris@0
|
112 }
|
Chris@0
|
113
|
Chris@0
|
114 size_t
|
Chris@0
|
115 SimpleCepstrum::getPreferredBlockSize() const
|
Chris@0
|
116 {
|
Chris@0
|
117 return 1024;
|
Chris@0
|
118 }
|
Chris@0
|
119
|
Chris@0
|
120 size_t
|
Chris@0
|
121 SimpleCepstrum::getPreferredStepSize() const
|
Chris@0
|
122 {
|
Chris@0
|
123 return 256;
|
Chris@0
|
124 }
|
Chris@0
|
125
|
Chris@0
|
126 size_t
|
Chris@0
|
127 SimpleCepstrum::getMinChannelCount() const
|
Chris@0
|
128 {
|
Chris@0
|
129 return 1;
|
Chris@0
|
130 }
|
Chris@0
|
131
|
Chris@0
|
132 size_t
|
Chris@0
|
133 SimpleCepstrum::getMaxChannelCount() const
|
Chris@0
|
134 {
|
Chris@0
|
135 return 1;
|
Chris@0
|
136 }
|
Chris@0
|
137
|
Chris@0
|
138 SimpleCepstrum::ParameterList
|
Chris@0
|
139 SimpleCepstrum::getParameterDescriptors() const
|
Chris@0
|
140 {
|
Chris@0
|
141 ParameterList list;
|
Chris@0
|
142
|
Chris@0
|
143 ParameterDescriptor d;
|
Chris@0
|
144
|
Chris@0
|
145 d.identifier = "fmin";
|
Chris@0
|
146 d.name = "Minimum frequency";
|
Chris@0
|
147 d.description = "";
|
Chris@0
|
148 d.unit = "Hz";
|
Chris@0
|
149 d.minValue = m_inputSampleRate / m_blockSize;
|
Chris@0
|
150 d.maxValue = m_inputSampleRate / 2;
|
Chris@0
|
151 d.defaultValue = 50;
|
Chris@0
|
152 d.isQuantized = false;
|
Chris@0
|
153 list.push_back(d);
|
Chris@0
|
154
|
Chris@0
|
155 d.identifier = "fmax";
|
Chris@0
|
156 d.name = "Maximum frequency";
|
Chris@0
|
157 d.description = "";
|
Chris@0
|
158 d.unit = "Hz";
|
Chris@0
|
159 d.minValue = m_inputSampleRate / m_blockSize;
|
Chris@0
|
160 d.maxValue = m_inputSampleRate / 2;
|
Chris@0
|
161 d.defaultValue = 1000;
|
Chris@0
|
162 d.isQuantized = false;
|
Chris@0
|
163 list.push_back(d);
|
Chris@0
|
164
|
Chris@5
|
165 d.identifier = "histlen";
|
Chris@5
|
166 d.name = "Mean filter history length";
|
Chris@5
|
167 d.description = "";
|
Chris@5
|
168 d.unit = "";
|
Chris@5
|
169 d.minValue = 1;
|
Chris@5
|
170 d.maxValue = 10;
|
Chris@10
|
171 d.defaultValue = 1;
|
Chris@5
|
172 d.isQuantized = true;
|
Chris@5
|
173 d.quantizeStep = 1;
|
Chris@5
|
174 list.push_back(d);
|
Chris@5
|
175
|
Chris@10
|
176 d.identifier = "vflen";
|
Chris@10
|
177 d.name = "Vertical filter length";
|
Chris@10
|
178 d.description = "";
|
Chris@10
|
179 d.unit = "";
|
Chris@10
|
180 d.minValue = 1;
|
Chris@10
|
181 d.maxValue = 11;
|
Chris@10
|
182 d.defaultValue = 1;
|
Chris@10
|
183 d.isQuantized = true;
|
Chris@10
|
184 d.quantizeStep = 2;
|
Chris@10
|
185 list.push_back(d);
|
Chris@10
|
186
|
Chris@3
|
187 d.identifier = "method";
|
Chris@3
|
188 d.name = "Cepstrum transform method";
|
Chris@3
|
189 d.unit = "";
|
Chris@3
|
190 d.minValue = 0;
|
Chris@5
|
191 d.maxValue = 4;
|
Chris@3
|
192 d.defaultValue = 0;
|
Chris@3
|
193 d.isQuantized = true;
|
Chris@3
|
194 d.quantizeStep = 1;
|
Chris@3
|
195 d.valueNames.push_back("Inverse symmetric");
|
Chris@3
|
196 d.valueNames.push_back("Inverse asymmetric");
|
Chris@4
|
197 d.valueNames.push_back("Inverse complex");
|
Chris@3
|
198 d.valueNames.push_back("Forward magnitude");
|
Chris@3
|
199 d.valueNames.push_back("Forward difference");
|
Chris@3
|
200 list.push_back(d);
|
Chris@3
|
201
|
Chris@10
|
202 d.identifier = "clamp";
|
Chris@10
|
203 d.name = "Clamp negative values in cepstrum at zero";
|
Chris@10
|
204 d.unit = "";
|
Chris@10
|
205 d.minValue = 0;
|
Chris@10
|
206 d.maxValue = 1;
|
Chris@10
|
207 d.defaultValue = 0;
|
Chris@10
|
208 d.isQuantized = true;
|
Chris@10
|
209 d.quantizeStep = 1;
|
Chris@10
|
210 d.valueNames.clear();
|
Chris@10
|
211 list.push_back(d);
|
Chris@10
|
212
|
Chris@0
|
213 return list;
|
Chris@0
|
214 }
|
Chris@0
|
215
|
Chris@0
|
216 float
|
Chris@0
|
217 SimpleCepstrum::getParameter(string identifier) const
|
Chris@0
|
218 {
|
Chris@0
|
219 if (identifier == "fmin") return m_fmin;
|
Chris@0
|
220 else if (identifier == "fmax") return m_fmax;
|
Chris@5
|
221 else if (identifier == "histlen") return m_histlen;
|
Chris@10
|
222 else if (identifier == "vflen") return m_vflen;
|
Chris@10
|
223 else if (identifier == "clamp") return (m_clamp ? 1 : 0);
|
Chris@3
|
224 else if (identifier == "method") return (int)m_method;
|
Chris@0
|
225 else return 0.f;
|
Chris@0
|
226 }
|
Chris@0
|
227
|
Chris@0
|
228 void
|
Chris@0
|
229 SimpleCepstrum::setParameter(string identifier, float value)
|
Chris@0
|
230 {
|
Chris@0
|
231 if (identifier == "fmin") m_fmin = value;
|
Chris@0
|
232 else if (identifier == "fmax") m_fmax = value;
|
Chris@5
|
233 else if (identifier == "histlen") m_histlen = value;
|
Chris@10
|
234 else if (identifier == "vflen") m_vflen = value;
|
Chris@10
|
235 else if (identifier == "clamp") m_clamp = (value > 0.5);
|
Chris@3
|
236 else if (identifier == "method") m_method = Method(int(value + 0.5));
|
Chris@0
|
237 }
|
Chris@0
|
238
|
Chris@0
|
239 SimpleCepstrum::ProgramList
|
Chris@0
|
240 SimpleCepstrum::getPrograms() const
|
Chris@0
|
241 {
|
Chris@0
|
242 ProgramList list;
|
Chris@0
|
243 return list;
|
Chris@0
|
244 }
|
Chris@0
|
245
|
Chris@0
|
246 string
|
Chris@0
|
247 SimpleCepstrum::getCurrentProgram() const
|
Chris@0
|
248 {
|
Chris@0
|
249 return ""; // no programs
|
Chris@0
|
250 }
|
Chris@0
|
251
|
Chris@0
|
252 void
|
Chris@0
|
253 SimpleCepstrum::selectProgram(string name)
|
Chris@0
|
254 {
|
Chris@0
|
255 }
|
Chris@0
|
256
|
Chris@0
|
257 SimpleCepstrum::OutputList
|
Chris@0
|
258 SimpleCepstrum::getOutputDescriptors() const
|
Chris@0
|
259 {
|
Chris@0
|
260 OutputList outputs;
|
Chris@0
|
261
|
Chris@0
|
262 int n = 0;
|
Chris@0
|
263
|
Chris@0
|
264 OutputDescriptor d;
|
Chris@2
|
265
|
Chris@7
|
266 d.identifier = "raw_cepstral_peak";
|
Chris@7
|
267 d.name = "Frequency corresponding to raw cepstral peak";
|
Chris@24
|
268 d.description = "Return the frequency whose period corresponds to the quefrency with the maximum bin value within the specified range of the cepstrum";
|
Chris@6
|
269 d.unit = "Hz";
|
Chris@0
|
270 d.hasFixedBinCount = true;
|
Chris@0
|
271 d.binCount = 1;
|
Chris@0
|
272 d.hasKnownExtents = true;
|
Chris@0
|
273 d.minValue = m_fmin;
|
Chris@0
|
274 d.maxValue = m_fmax;
|
Chris@0
|
275 d.isQuantized = false;
|
Chris@0
|
276 d.sampleType = OutputDescriptor::OneSamplePerStep;
|
Chris@0
|
277 d.hasDuration = false;
|
Chris@5
|
278 m_pkOutput = n++;
|
Chris@0
|
279 outputs.push_back(d);
|
Chris@0
|
280
|
Chris@24
|
281 d.identifier = "interpolated_peak";
|
Chris@24
|
282 d.name = "Interpolated peak frequency";
|
Chris@40
|
283 d.description = "Return the frequency whose period corresponds to the quefrency with the maximum bin value within the specified range of the cepstrum, using parabolic interpolation to estimate the peak quefrency to finer than single bin resolution";
|
Chris@24
|
284 m_ipkOutput = n++;
|
Chris@24
|
285 outputs.push_back(d);
|
Chris@24
|
286
|
Chris@0
|
287 d.identifier = "variance";
|
Chris@0
|
288 d.name = "Variance of cepstral bins in range";
|
Chris@0
|
289 d.unit = "";
|
Chris@2
|
290 d.description = "Return the variance of bin values within the specified range of the cepstrum";
|
Chris@6
|
291 d.hasKnownExtents = false;
|
Chris@0
|
292 m_varOutput = n++;
|
Chris@0
|
293 outputs.push_back(d);
|
Chris@0
|
294
|
Chris@0
|
295 d.identifier = "peak";
|
Chris@8
|
296 d.name = "Value at peak";
|
Chris@0
|
297 d.unit = "";
|
Chris@2
|
298 d.description = "Return the value found in the maximum-valued bin within the specified range of the cepstrum";
|
Chris@0
|
299 m_pvOutput = n++;
|
Chris@0
|
300 outputs.push_back(d);
|
Chris@0
|
301
|
Chris@5
|
302 d.identifier = "peak_to_rms";
|
Chris@5
|
303 d.name = "Peak-to-RMS distance";
|
Chris@5
|
304 d.unit = "";
|
Chris@5
|
305 d.description = "Return the difference between maximum and root mean square bin values within the specified range of the cepstrum";
|
Chris@5
|
306 m_p2rOutput = n++;
|
Chris@5
|
307 outputs.push_back(d);
|
Chris@5
|
308
|
Chris@6
|
309 d.identifier = "peak_proportion";
|
Chris@7
|
310 d.name = "Energy around peak";
|
Chris@6
|
311 d.unit = "";
|
Chris@7
|
312 d.description = "Return the proportion of total energy that is found in the bins around the peak bin (as far as the nearest local minima), within the specified range of the cepstrum";
|
Chris@6
|
313 m_ppOutput = n++;
|
Chris@6
|
314 outputs.push_back(d);
|
Chris@6
|
315
|
Chris@20
|
316 d.identifier = "peak_to_second_peak";
|
Chris@27
|
317 d.name = "Peak to second-peak difference";
|
Chris@20
|
318 d.unit = "";
|
Chris@27
|
319 d.description = "Return the difference between the value found in the peak bin within the specified range of the cepstrum, and that found in the next highest peak";
|
Chris@20
|
320 m_pkoOutput = n++;
|
Chris@20
|
321 outputs.push_back(d);
|
Chris@20
|
322
|
Chris@6
|
323 d.identifier = "total";
|
Chris@6
|
324 d.name = "Total energy";
|
Chris@6
|
325 d.unit = "";
|
Chris@7
|
326 d.description = "Return the total energy found in all bins within the specified range of the cepstrum";
|
Chris@6
|
327 m_totOutput = n++;
|
Chris@6
|
328 outputs.push_back(d);
|
Chris@6
|
329
|
Chris@0
|
330 d.identifier = "cepstrum";
|
Chris@0
|
331 d.name = "Cepstrum";
|
Chris@0
|
332 d.unit = "";
|
Chris@2
|
333 d.description = "The unprocessed cepstrum bins within the specified range";
|
Chris@0
|
334
|
Chris@0
|
335 int from = int(m_inputSampleRate / m_fmax);
|
Chris@0
|
336 int to = int(m_inputSampleRate / m_fmin);
|
Chris@0
|
337 if (to >= (int)m_blockSize / 2) {
|
Chris@0
|
338 to = m_blockSize / 2 - 1;
|
Chris@0
|
339 }
|
Chris@0
|
340 d.binCount = to - from + 1;
|
Chris@0
|
341 for (int i = from; i <= to; ++i) {
|
Chris@0
|
342 float freq = m_inputSampleRate / i;
|
Chris@5
|
343 char buffer[20];
|
Chris@2
|
344 sprintf(buffer, "%.2f Hz", freq);
|
Chris@0
|
345 d.binNames.push_back(buffer);
|
Chris@0
|
346 }
|
Chris@0
|
347
|
Chris@0
|
348 d.hasKnownExtents = false;
|
Chris@0
|
349 m_cepOutput = n++;
|
Chris@0
|
350 outputs.push_back(d);
|
Chris@0
|
351
|
Chris@0
|
352 d.identifier = "am";
|
Chris@5
|
353 d.name = "Cepstrum bins relative to RMS";
|
Chris@5
|
354 d.description = "The cepstrum bins within the specified range, expressed as a value relative to the root mean square bin value in the range, with values below the RMS clamped to zero";
|
Chris@0
|
355 m_amOutput = n++;
|
Chris@0
|
356 outputs.push_back(d);
|
Chris@0
|
357
|
Chris@2
|
358 d.identifier = "env";
|
Chris@2
|
359 d.name = "Spectral envelope";
|
Chris@2
|
360 d.description = "Envelope calculated from the cepstral values below the specified minimum";
|
Chris@2
|
361 d.binCount = m_blockSize/2 + 1;
|
Chris@2
|
362 d.binNames.clear();
|
Chris@7
|
363 for (int i = 0; i < (int)d.binCount; ++i) {
|
Chris@2
|
364 float freq = (m_inputSampleRate / m_blockSize) * i;
|
Chris@5
|
365 char buffer[20];
|
Chris@2
|
366 sprintf(buffer, "%.2f Hz", freq);
|
Chris@2
|
367 d.binNames.push_back(buffer);
|
Chris@2
|
368 }
|
Chris@2
|
369 m_envOutput = n++;
|
Chris@2
|
370 outputs.push_back(d);
|
Chris@2
|
371
|
Chris@2
|
372 d.identifier = "es";
|
Chris@2
|
373 d.name = "Spectrum without envelope";
|
Chris@2
|
374 d.description = "Magnitude of spectrum values divided by calculated envelope values, to deconvolve the envelope";
|
Chris@2
|
375 m_esOutput = n++;
|
Chris@2
|
376 outputs.push_back(d);
|
Chris@2
|
377
|
Chris@0
|
378 return outputs;
|
Chris@0
|
379 }
|
Chris@0
|
380
|
Chris@0
|
381 bool
|
Chris@0
|
382 SimpleCepstrum::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
Chris@0
|
383 {
|
Chris@0
|
384 if (channels < getMinChannelCount() ||
|
Chris@0
|
385 channels > getMaxChannelCount()) return false;
|
Chris@0
|
386
|
Chris@0
|
387 // std::cerr << "SimpleCepstrum::initialise: channels = " << channels
|
Chris@0
|
388 // << ", stepSize = " << stepSize << ", blockSize = " << blockSize
|
Chris@0
|
389 // << std::endl;
|
Chris@0
|
390
|
Chris@0
|
391 m_channels = channels;
|
Chris@0
|
392 m_stepSize = stepSize;
|
Chris@0
|
393 m_blockSize = blockSize;
|
Chris@0
|
394
|
Chris@5
|
395 m_binFrom = int(m_inputSampleRate / m_fmax);
|
Chris@5
|
396 m_binTo = int(m_inputSampleRate / m_fmin);
|
Chris@5
|
397
|
Chris@7
|
398 if (m_binTo >= (int)m_blockSize / 2) {
|
Chris@5
|
399 m_binTo = m_blockSize / 2 - 1;
|
Chris@5
|
400 }
|
Chris@5
|
401
|
Chris@5
|
402 m_bins = (m_binTo - m_binFrom) + 1;
|
Chris@5
|
403
|
Chris@5
|
404 m_history = new double *[m_histlen];
|
Chris@5
|
405 for (int i = 0; i < m_histlen; ++i) {
|
Chris@5
|
406 m_history[i] = new double[m_bins];
|
Chris@5
|
407 }
|
Chris@5
|
408
|
Chris@5
|
409 reset();
|
Chris@5
|
410
|
Chris@0
|
411 return true;
|
Chris@0
|
412 }
|
Chris@0
|
413
|
Chris@0
|
414 void
|
Chris@0
|
415 SimpleCepstrum::reset()
|
Chris@0
|
416 {
|
Chris@5
|
417 for (int i = 0; i < m_histlen; ++i) {
|
Chris@5
|
418 for (int j = 0; j < m_bins; ++j) {
|
Chris@5
|
419 m_history[i][j] = 0.0;
|
Chris@5
|
420 }
|
Chris@5
|
421 }
|
Chris@5
|
422 }
|
Chris@5
|
423
|
Chris@5
|
424 void
|
Chris@5
|
425 SimpleCepstrum::filter(const double *cep, double *result)
|
Chris@5
|
426 {
|
Chris@5
|
427 int hix = m_histlen - 1; // current history index
|
Chris@5
|
428
|
Chris@5
|
429 // roll back the history
|
Chris@5
|
430 if (m_histlen > 1) {
|
Chris@5
|
431 double *oldest = m_history[0];
|
Chris@5
|
432 for (int i = 1; i < m_histlen; ++i) {
|
Chris@5
|
433 m_history[i-1] = m_history[i];
|
Chris@5
|
434 }
|
Chris@5
|
435 // and stick this back in the newest spot, to recycle
|
Chris@5
|
436 m_history[hix] = oldest;
|
Chris@5
|
437 }
|
Chris@5
|
438
|
Chris@5
|
439 for (int i = 0; i < m_bins; ++i) {
|
Chris@10
|
440 double v = 0;
|
Chris@10
|
441 int n = 0;
|
Chris@10
|
442 // average according to the vertical filter length
|
Chris@10
|
443 for (int j = -m_vflen/2; j <= m_vflen/2; ++j) {
|
Chris@10
|
444 int ix = i + m_binFrom + j;
|
Chris@39
|
445 if (ix >= 0 && ix < (int)m_blockSize) {
|
Chris@10
|
446 v += cep[ix];
|
Chris@10
|
447 ++n;
|
Chris@10
|
448 }
|
Chris@10
|
449 }
|
Chris@10
|
450 m_history[hix][i] = v / n;
|
Chris@5
|
451 }
|
Chris@5
|
452
|
Chris@5
|
453 for (int i = 0; i < m_bins; ++i) {
|
Chris@5
|
454 double mean = 0.0;
|
Chris@5
|
455 for (int j = 0; j < m_histlen; ++j) {
|
Chris@5
|
456 mean += m_history[j][i];
|
Chris@5
|
457 }
|
Chris@5
|
458 mean /= m_histlen;
|
Chris@5
|
459 result[i] = mean;
|
Chris@5
|
460 }
|
Chris@5
|
461 }
|
Chris@24
|
462
|
Chris@24
|
463 double
|
Chris@24
|
464 SimpleCepstrum::findInterpolatedPeak(const double *in, int maxbin)
|
Chris@24
|
465 {
|
Chris@40
|
466 // after jos,
|
Chris@40
|
467 // https://ccrma.stanford.edu/~jos/sasp/Quadratic_Interpolation_Spectral_Peaks.html
|
Chris@40
|
468
|
Chris@40
|
469 if (maxbin < 1 || maxbin > m_bins - 2) {
|
Chris@24
|
470 return maxbin;
|
Chris@24
|
471 }
|
Chris@24
|
472
|
Chris@40
|
473 double alpha = in[maxbin-1];
|
Chris@40
|
474 double beta = in[maxbin];
|
Chris@40
|
475 double gamma = in[maxbin+1];
|
Chris@24
|
476
|
Chris@40
|
477 double denom = (alpha - 2*beta + gamma);
|
Chris@24
|
478
|
Chris@40
|
479 if (denom == 0) {
|
Chris@40
|
480 // flat
|
Chris@40
|
481 return maxbin;
|
Chris@24
|
482 }
|
Chris@24
|
483
|
Chris@40
|
484 double p = ((alpha - gamma) / denom) / 2.0;
|
Chris@24
|
485
|
Chris@40
|
486 return double(maxbin) + p;
|
Chris@24
|
487 }
|
Chris@5
|
488
|
Chris@5
|
489 void
|
Chris@5
|
490 SimpleCepstrum::addStatisticalOutputs(FeatureSet &fs, const double *data)
|
Chris@5
|
491 {
|
Chris@5
|
492 int n = m_bins;
|
Chris@5
|
493
|
Chris@6
|
494 double maxval = 0.0;
|
Chris@5
|
495 int maxbin = 0;
|
Chris@5
|
496
|
Chris@5
|
497 for (int i = 0; i < n; ++i) {
|
Chris@5
|
498 if (data[i] > maxval) {
|
Chris@5
|
499 maxval = data[i];
|
Chris@6
|
500 maxbin = i;
|
Chris@5
|
501 }
|
Chris@5
|
502 }
|
Chris@5
|
503
|
Chris@20
|
504 double nextPeakVal = 0.0;
|
Chris@20
|
505
|
Chris@20
|
506 for (int i = 1; i+1 < n; ++i) {
|
Chris@20
|
507 if (data[i] > data[i-1] &&
|
Chris@20
|
508 data[i] > data[i+1] &&
|
Chris@20
|
509 i != maxbin &&
|
Chris@20
|
510 data[i] > nextPeakVal) {
|
Chris@20
|
511 nextPeakVal = data[i];
|
Chris@20
|
512 }
|
Chris@20
|
513 }
|
Chris@20
|
514
|
Chris@5
|
515 Feature rf;
|
Chris@24
|
516 Feature irf;
|
Chris@6
|
517 if (maxval > 0.0) {
|
Chris@6
|
518 rf.values.push_back(m_inputSampleRate / (maxbin + m_binFrom));
|
Chris@24
|
519 double cimax = findInterpolatedPeak(data, maxbin);
|
Chris@24
|
520 irf.values.push_back(m_inputSampleRate / (cimax + m_binFrom));
|
Chris@5
|
521 } else {
|
Chris@5
|
522 rf.values.push_back(0);
|
Chris@24
|
523 irf.values.push_back(0);
|
Chris@5
|
524 }
|
Chris@5
|
525 fs[m_pkOutput].push_back(rf);
|
Chris@24
|
526 fs[m_ipkOutput].push_back(irf);
|
Chris@5
|
527
|
Chris@6
|
528 double total = 0;
|
Chris@5
|
529 for (int i = 0; i < n; ++i) {
|
Chris@6
|
530 total += data[i];
|
Chris@5
|
531 }
|
Chris@5
|
532
|
Chris@6
|
533 Feature tot;
|
Chris@6
|
534 tot.values.push_back(total);
|
Chris@6
|
535 fs[m_totOutput].push_back(tot);
|
Chris@6
|
536
|
Chris@6
|
537 double mean = total / n;
|
Chris@6
|
538
|
Chris@6
|
539 double totsqr = 0;
|
Chris@8
|
540 double abstot = 0;
|
Chris@5
|
541 for (int i = 0; i < n; ++i) {
|
Chris@6
|
542 totsqr += data[i] * data[i];
|
Chris@8
|
543 abstot += fabs(data[i]);
|
Chris@5
|
544 }
|
Chris@6
|
545 double rms = sqrt(totsqr / n);
|
Chris@5
|
546
|
Chris@5
|
547 double variance = 0;
|
Chris@5
|
548 for (int i = 0; i < n; ++i) {
|
Chris@5
|
549 double dev = fabs(data[i] - mean);
|
Chris@5
|
550 variance += dev * dev;
|
Chris@5
|
551 }
|
Chris@5
|
552 variance /= n;
|
Chris@5
|
553
|
Chris@6
|
554 double aroundPeak = 0.0;
|
Chris@6
|
555 double peakProportion = 0.0;
|
Chris@6
|
556 if (maxval > 0.0) {
|
Chris@7
|
557 aroundPeak += fabs(maxval);
|
Chris@6
|
558 int i = maxbin - 1;
|
Chris@6
|
559 while (i > 0 && data[i] <= data[i+1]) {
|
Chris@7
|
560 aroundPeak += fabs(data[i]);
|
Chris@6
|
561 --i;
|
Chris@6
|
562 }
|
Chris@6
|
563 i = maxbin + 1;
|
Chris@6
|
564 while (i < n && data[i] <= data[i-1]) {
|
Chris@7
|
565 aroundPeak += fabs(data[i]);
|
Chris@6
|
566 ++i;
|
Chris@6
|
567 }
|
Chris@6
|
568 }
|
Chris@8
|
569 peakProportion = aroundPeak / abstot;
|
Chris@6
|
570 Feature pp;
|
Chris@6
|
571 pp.values.push_back(peakProportion);
|
Chris@6
|
572 fs[m_ppOutput].push_back(pp);
|
Chris@6
|
573
|
Chris@5
|
574 Feature vf;
|
Chris@5
|
575 vf.values.push_back(variance);
|
Chris@5
|
576 fs[m_varOutput].push_back(vf);
|
Chris@5
|
577
|
Chris@5
|
578 Feature pr;
|
Chris@5
|
579 pr.values.push_back(maxval - rms);
|
Chris@5
|
580 fs[m_p2rOutput].push_back(pr);
|
Chris@5
|
581
|
Chris@5
|
582 Feature pv;
|
Chris@5
|
583 pv.values.push_back(maxval);
|
Chris@5
|
584 fs[m_pvOutput].push_back(pv);
|
Chris@5
|
585
|
Chris@20
|
586 Feature pko;
|
Chris@20
|
587 if (nextPeakVal != 0.0) {
|
Chris@27
|
588 pko.values.push_back(maxval - nextPeakVal);
|
Chris@20
|
589 } else {
|
Chris@20
|
590 pko.values.push_back(0.0);
|
Chris@20
|
591 }
|
Chris@20
|
592 fs[m_pkoOutput].push_back(pko);
|
Chris@20
|
593
|
Chris@5
|
594 Feature am;
|
Chris@5
|
595 for (int i = 0; i < n; ++i) {
|
Chris@5
|
596 if (data[i] < rms) am.values.push_back(0);
|
Chris@5
|
597 else am.values.push_back(data[i] - rms);
|
Chris@5
|
598 }
|
Chris@5
|
599 fs[m_amOutput].push_back(am);
|
Chris@5
|
600 }
|
Chris@5
|
601
|
Chris@5
|
602 void
|
Chris@5
|
603 SimpleCepstrum::addEnvelopeOutputs(FeatureSet &fs, const float *const *inputBuffers, const double *cep)
|
Chris@5
|
604 {
|
Chris@5
|
605 // Wipe the higher cepstral bins in order to calculate the
|
Chris@5
|
606 // envelope. This calculation uses the raw cepstrum, not the
|
Chris@5
|
607 // filtered values (because only values "in frequency range" are
|
Chris@5
|
608 // filtered).
|
Chris@5
|
609 int bs = m_blockSize;
|
Chris@5
|
610 int hs = m_blockSize/2 + 1;
|
Chris@5
|
611
|
Chris@5
|
612 double *ecep = new double[bs];
|
Chris@5
|
613 for (int i = 0; i < m_binFrom; ++i) {
|
Chris@5
|
614 ecep[i] = cep[i] / bs;
|
Chris@5
|
615 }
|
Chris@5
|
616 for (int i = m_binFrom; i < bs; ++i) {
|
Chris@5
|
617 ecep[i] = 0;
|
Chris@5
|
618 }
|
Chris@5
|
619 ecep[0] /= 2;
|
Chris@5
|
620 ecep[m_binFrom-1] /= 2;
|
Chris@5
|
621
|
Chris@5
|
622 double *env = new double[bs];
|
Chris@5
|
623 double *io = new double[bs];
|
Chris@7
|
624
|
Chris@7
|
625 //!!! This is only right if the previous transform was an inverse one!
|
Chris@33
|
626 Vamp::FFT::forward(bs, ecep, 0, env, io);
|
Chris@5
|
627
|
Chris@5
|
628 for (int i = 0; i < hs; ++i) {
|
Chris@5
|
629 env[i] = exp(env[i]);
|
Chris@5
|
630 }
|
Chris@5
|
631 Feature envf;
|
Chris@5
|
632 for (int i = 0; i < hs; ++i) {
|
Chris@5
|
633 envf.values.push_back(env[i]);
|
Chris@5
|
634 }
|
Chris@5
|
635 fs[m_envOutput].push_back(envf);
|
Chris@5
|
636
|
Chris@5
|
637 Feature es;
|
Chris@5
|
638 for (int i = 0; i < hs; ++i) {
|
Chris@5
|
639 double re = inputBuffers[0][i*2 ] / env[i];
|
Chris@5
|
640 double im = inputBuffers[0][i*2+1] / env[i];
|
Chris@5
|
641 double mag = sqrt(re*re + im*im);
|
Chris@5
|
642 es.values.push_back(mag);
|
Chris@5
|
643 }
|
Chris@5
|
644 fs[m_esOutput].push_back(es);
|
Chris@5
|
645
|
Chris@5
|
646 delete[] env;
|
Chris@5
|
647 delete[] ecep;
|
Chris@5
|
648 delete[] io;
|
Chris@0
|
649 }
|
Chris@0
|
650
|
Chris@0
|
651 SimpleCepstrum::FeatureSet
|
Chris@0
|
652 SimpleCepstrum::process(const float *const *inputBuffers, Vamp::RealTime timestamp)
|
Chris@0
|
653 {
|
Chris@1
|
654 FeatureSet fs;
|
Chris@1
|
655
|
Chris@0
|
656 int bs = m_blockSize;
|
Chris@0
|
657 int hs = m_blockSize/2 + 1;
|
Chris@0
|
658
|
Chris@5
|
659 double *rawcep = new double[bs];
|
Chris@3
|
660 double *io = new double[bs];
|
Chris@3
|
661
|
Chris@4
|
662 if (m_method != InverseComplex) {
|
Chris@3
|
663
|
Chris@4
|
664 double *logmag = new double[bs];
|
Chris@4
|
665
|
Chris@4
|
666 for (int i = 0; i < hs; ++i) {
|
Chris@3
|
667
|
Chris@4
|
668 double power =
|
Chris@4
|
669 inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] +
|
Chris@4
|
670 inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1];
|
Chris@5
|
671 double mag = sqrt(power);
|
Chris@3
|
672
|
Chris@5
|
673 double lm = log(mag + 0.00000001);
|
Chris@4
|
674
|
Chris@4
|
675 switch (m_method) {
|
Chris@4
|
676 case InverseSymmetric:
|
Chris@4
|
677 logmag[i] = lm;
|
Chris@4
|
678 if (i > 0) logmag[bs - i] = lm;
|
Chris@4
|
679 break;
|
Chris@4
|
680 case InverseAsymmetric:
|
Chris@4
|
681 logmag[i] = lm;
|
Chris@4
|
682 if (i > 0) logmag[bs - i] = 0;
|
Chris@4
|
683 break;
|
Chris@4
|
684 default:
|
Chris@4
|
685 logmag[bs/2 + i - 1] = lm;
|
Chris@4
|
686 if (i < hs-1) {
|
Chris@4
|
687 logmag[bs/2 - i - 1] = lm;
|
Chris@4
|
688 }
|
Chris@4
|
689 break;
|
Chris@3
|
690 }
|
Chris@3
|
691 }
|
Chris@4
|
692
|
Chris@4
|
693 if (m_method == InverseSymmetric ||
|
Chris@4
|
694 m_method == InverseAsymmetric) {
|
Chris@4
|
695
|
Chris@33
|
696 Vamp::FFT::inverse(bs, logmag, 0, rawcep, io);
|
Chris@4
|
697
|
Chris@4
|
698 } else {
|
Chris@4
|
699
|
Chris@33
|
700 Vamp::FFT::forward(bs, logmag, 0, rawcep, io);
|
Chris@4
|
701
|
Chris@4
|
702 if (m_method == ForwardDifference) {
|
Chris@4
|
703 for (int i = 0; i < hs; ++i) {
|
Chris@5
|
704 rawcep[i] = fabs(io[i]) - fabs(rawcep[i]);
|
Chris@4
|
705 }
|
Chris@4
|
706 } else {
|
Chris@4
|
707 for (int i = 0; i < hs; ++i) {
|
Chris@5
|
708 rawcep[i] = sqrt(rawcep[i]*rawcep[i] + io[i]*io[i]);
|
Chris@4
|
709 }
|
Chris@4
|
710 }
|
Chris@4
|
711 }
|
Chris@4
|
712
|
Chris@4
|
713 delete[] logmag;
|
Chris@4
|
714
|
Chris@4
|
715 } else { // InverseComplex
|
Chris@4
|
716
|
Chris@4
|
717 double *ri = new double[bs];
|
Chris@4
|
718 double *ii = new double[bs];
|
Chris@4
|
719
|
Chris@4
|
720 for (int i = 0; i < hs; ++i) {
|
Chris@4
|
721 double re = inputBuffers[0][i*2];
|
Chris@4
|
722 double im = inputBuffers[0][i*2+1];
|
Chris@4
|
723 std::complex<double> c(re, im);
|
Chris@4
|
724 std::complex<double> clog = std::log(c);
|
Chris@4
|
725 ri[i] = clog.real();
|
Chris@4
|
726 ii[i] = clog.imag();
|
Chris@4
|
727 if (i > 0) {
|
Chris@4
|
728 ri[bs - i] = ri[i];
|
Chris@4
|
729 ii[bs - i] = -ii[i];
|
Chris@4
|
730 }
|
Chris@4
|
731 }
|
Chris@4
|
732
|
Chris@33
|
733 Vamp::FFT::inverse(bs, ri, ii, rawcep, io);
|
Chris@4
|
734
|
Chris@4
|
735 delete[] ri;
|
Chris@4
|
736 delete[] ii;
|
Chris@3
|
737 }
|
Chris@0
|
738
|
Chris@0
|
739 if (m_clamp) {
|
Chris@0
|
740 for (int i = 0; i < bs; ++i) {
|
Chris@5
|
741 if (rawcep[i] < 0) rawcep[i] = 0;
|
Chris@0
|
742 }
|
Chris@0
|
743 }
|
Chris@0
|
744
|
Chris@5
|
745 delete[] io;
|
Chris@0
|
746
|
Chris@5
|
747 double *latest = new double[m_bins];
|
Chris@5
|
748 filter(rawcep, latest);
|
Chris@5
|
749
|
Chris@5
|
750 int n = m_bins;
|
Chris@0
|
751
|
Chris@0
|
752 Feature cf;
|
Chris@5
|
753 for (int i = 0; i < n; ++i) {
|
Chris@5
|
754 cf.values.push_back(latest[i]);
|
Chris@0
|
755 }
|
Chris@0
|
756 fs[m_cepOutput].push_back(cf);
|
Chris@0
|
757
|
Chris@5
|
758 addStatisticalOutputs(fs, latest);
|
Chris@0
|
759
|
Chris@5
|
760 addEnvelopeOutputs(fs, inputBuffers, rawcep);
|
Chris@0
|
761
|
Chris@5
|
762 delete[] latest;
|
Chris@7
|
763 delete[] rawcep;
|
Chris@0
|
764
|
Chris@0
|
765 return fs;
|
Chris@0
|
766 }
|
Chris@0
|
767
|
Chris@0
|
768 SimpleCepstrum::FeatureSet
|
Chris@0
|
769 SimpleCepstrum::getRemainingFeatures()
|
Chris@0
|
770 {
|
Chris@0
|
771 FeatureSet fs;
|
Chris@0
|
772 return fs;
|
Chris@0
|
773 }
|