annotate src/fftw-3.3.3/rdft/rdft2-rdft.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21
Chris@10 22 #include "rdft.h"
Chris@10 23
Chris@10 24 typedef struct {
Chris@10 25 solver super;
Chris@10 26 } S;
Chris@10 27
Chris@10 28 typedef struct {
Chris@10 29 plan_rdft2 super;
Chris@10 30
Chris@10 31 plan *cld, *cldrest;
Chris@10 32 INT n, vl, nbuf, bufdist;
Chris@10 33 INT cs, ivs, ovs;
Chris@10 34 } P;
Chris@10 35
Chris@10 36 /***************************************************************************/
Chris@10 37
Chris@10 38 /* FIXME: have alternate copy functions that push a vector loop inside
Chris@10 39 the n loops? */
Chris@10 40
Chris@10 41 /* copy halfcomplex array r (contiguous) to complex (strided) array rio/iio. */
Chris@10 42 static void hc2c(INT n, R *r, R *rio, R *iio, INT os)
Chris@10 43 {
Chris@10 44 INT i;
Chris@10 45
Chris@10 46 rio[0] = r[0];
Chris@10 47 iio[0] = 0;
Chris@10 48
Chris@10 49 for (i = 1; i + i < n; ++i) {
Chris@10 50 rio[i * os] = r[i];
Chris@10 51 iio[i * os] = r[n - i];
Chris@10 52 }
Chris@10 53
Chris@10 54 if (i + i == n) { /* store the Nyquist frequency */
Chris@10 55 rio[i * os] = r[i];
Chris@10 56 iio[i * os] = K(0.0);
Chris@10 57 }
Chris@10 58 }
Chris@10 59
Chris@10 60 /* reverse of hc2c */
Chris@10 61 static void c2hc(INT n, R *rio, R *iio, INT is, R *r)
Chris@10 62 {
Chris@10 63 INT i;
Chris@10 64
Chris@10 65 r[0] = rio[0];
Chris@10 66
Chris@10 67 for (i = 1; i + i < n; ++i) {
Chris@10 68 r[i] = rio[i * is];
Chris@10 69 r[n - i] = iio[i * is];
Chris@10 70 }
Chris@10 71
Chris@10 72 if (i + i == n) /* store the Nyquist frequency */
Chris@10 73 r[i] = rio[i * is];
Chris@10 74 }
Chris@10 75
Chris@10 76 /***************************************************************************/
Chris@10 77
Chris@10 78 static void apply_r2hc(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
Chris@10 79 {
Chris@10 80 const P *ego = (const P *) ego_;
Chris@10 81 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@10 82 INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist;
Chris@10 83 INT n = ego->n;
Chris@10 84 INT ivs = ego->ivs, ovs = ego->ovs, os = ego->cs;
Chris@10 85 R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
Chris@10 86 plan_rdft2 *cldrest;
Chris@10 87
Chris@10 88 for (i = nbuf; i <= vl; i += nbuf) {
Chris@10 89 /* transform to bufs: */
Chris@10 90 cld->apply((plan *) cld, r0, bufs);
Chris@10 91 r0 += ivs * nbuf; r1 += ivs * nbuf;
Chris@10 92
Chris@10 93 /* copy back */
Chris@10 94 for (j = 0; j < nbuf; ++j, cr += ovs, ci += ovs)
Chris@10 95 hc2c(n, bufs + j*bufdist, cr, ci, os);
Chris@10 96 }
Chris@10 97
Chris@10 98 X(ifree)(bufs);
Chris@10 99
Chris@10 100 /* Do the remaining transforms, if any: */
Chris@10 101 cldrest = (plan_rdft2 *) ego->cldrest;
Chris@10 102 cldrest->apply((plan *) cldrest, r0, r1, cr, ci);
Chris@10 103 }
Chris@10 104
Chris@10 105 static void apply_hc2r(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
Chris@10 106 {
Chris@10 107 const P *ego = (const P *) ego_;
Chris@10 108 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@10 109 INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist;
Chris@10 110 INT n = ego->n;
Chris@10 111 INT ivs = ego->ivs, ovs = ego->ovs, is = ego->cs;
Chris@10 112 R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
Chris@10 113 plan_rdft2 *cldrest;
Chris@10 114
Chris@10 115 for (i = nbuf; i <= vl; i += nbuf) {
Chris@10 116 /* copy to bufs */
Chris@10 117 for (j = 0; j < nbuf; ++j, cr += ivs, ci += ivs)
Chris@10 118 c2hc(n, cr, ci, is, bufs + j*bufdist);
Chris@10 119
Chris@10 120 /* transform back: */
Chris@10 121 cld->apply((plan *) cld, bufs, r0);
Chris@10 122 r0 += ovs * nbuf; r1 += ovs * nbuf;
Chris@10 123 }
Chris@10 124
Chris@10 125 X(ifree)(bufs);
Chris@10 126
Chris@10 127 /* Do the remaining transforms, if any: */
Chris@10 128 cldrest = (plan_rdft2 *) ego->cldrest;
Chris@10 129 cldrest->apply((plan *) cldrest, r0, r1, cr, ci);
Chris@10 130 }
Chris@10 131
Chris@10 132 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@10 133 {
Chris@10 134 P *ego = (P *) ego_;
Chris@10 135
Chris@10 136 X(plan_awake)(ego->cld, wakefulness);
Chris@10 137 X(plan_awake)(ego->cldrest, wakefulness);
Chris@10 138 }
Chris@10 139
Chris@10 140 static void destroy(plan *ego_)
Chris@10 141 {
Chris@10 142 P *ego = (P *) ego_;
Chris@10 143 X(plan_destroy_internal)(ego->cldrest);
Chris@10 144 X(plan_destroy_internal)(ego->cld);
Chris@10 145 }
Chris@10 146
Chris@10 147 static void print(const plan *ego_, printer *p)
Chris@10 148 {
Chris@10 149 const P *ego = (const P *) ego_;
Chris@10 150 p->print(p, "(rdft2-rdft-%s-%D%v/%D-%D%(%p%)%(%p%))",
Chris@10 151 ego->super.apply == apply_r2hc ? "r2hc" : "hc2r",
Chris@10 152 ego->n, ego->nbuf,
Chris@10 153 ego->vl, ego->bufdist % ego->n,
Chris@10 154 ego->cld, ego->cldrest);
Chris@10 155 }
Chris@10 156
Chris@10 157 static INT min_nbuf(const problem_rdft2 *p, INT n, INT vl)
Chris@10 158 {
Chris@10 159 INT is, os, ivs, ovs;
Chris@10 160
Chris@10 161 if (p->r0 != p->cr)
Chris@10 162 return 1;
Chris@10 163 if (X(rdft2_inplace_strides(p, RNK_MINFTY)))
Chris@10 164 return 1;
Chris@10 165 A(p->vecsz->rnk == 1); /* rank 0 and MINFTY are inplace */
Chris@10 166
Chris@10 167 X(rdft2_strides)(p->kind, p->sz->dims, &is, &os);
Chris@10 168 X(rdft2_strides)(p->kind, p->vecsz->dims, &ivs, &ovs);
Chris@10 169
Chris@10 170 /* handle one potentially common case: "contiguous" real and
Chris@10 171 complex arrays, which overlap because of the differing sizes. */
Chris@10 172 if (n * X(iabs)(is) <= X(iabs)(ivs)
Chris@10 173 && (n/2 + 1) * X(iabs)(os) <= X(iabs)(ovs)
Chris@10 174 && ( ((p->cr - p->ci) <= X(iabs)(os)) ||
Chris@10 175 ((p->ci - p->cr) <= X(iabs)(os)) )
Chris@10 176 && ivs > 0 && ovs > 0) {
Chris@10 177 INT vsmin = X(imin)(ivs, ovs);
Chris@10 178 INT vsmax = X(imax)(ivs, ovs);
Chris@10 179 return(((vsmax - vsmin) * vl + vsmin - 1) / vsmin);
Chris@10 180 }
Chris@10 181
Chris@10 182 return vl; /* punt: just buffer the whole vector */
Chris@10 183 }
Chris@10 184
Chris@10 185 static int applicable0(const problem *p_, const S *ego, const planner *plnr)
Chris@10 186 {
Chris@10 187 const problem_rdft2 *p = (const problem_rdft2 *) p_;
Chris@10 188 UNUSED(ego);
Chris@10 189 return(1
Chris@10 190 && p->vecsz->rnk <= 1
Chris@10 191 && p->sz->rnk == 1
Chris@10 192
Chris@10 193 /* FIXME: does it make sense to do R2HCII ? */
Chris@10 194 && (p->kind == R2HC || p->kind == HC2R)
Chris@10 195
Chris@10 196 /* real strides must allow for reduction to rdft */
Chris@10 197 && (2 * (p->r1 - p->r0) ==
Chris@10 198 (((p->kind == R2HC) ? p->sz->dims[0].is : p->sz->dims[0].os)))
Chris@10 199
Chris@10 200 && !(X(toobig)(p->sz->dims[0].n) && CONSERVE_MEMORYP(plnr))
Chris@10 201 );
Chris@10 202 }
Chris@10 203
Chris@10 204 static int applicable(const problem *p_, const S *ego, const planner *plnr)
Chris@10 205 {
Chris@10 206 const problem_rdft2 *p;
Chris@10 207
Chris@10 208 if (NO_BUFFERINGP(plnr)) return 0;
Chris@10 209
Chris@10 210 if (!applicable0(p_, ego, plnr)) return 0;
Chris@10 211
Chris@10 212 p = (const problem_rdft2 *) p_;
Chris@10 213 if (NO_UGLYP(plnr)) {
Chris@10 214 if (p->r0 != p->cr) return 0;
Chris@10 215 if (X(toobig)(p->sz->dims[0].n)) return 0;
Chris@10 216 }
Chris@10 217 return 1;
Chris@10 218 }
Chris@10 219
Chris@10 220 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@10 221 {
Chris@10 222 const S *ego = (const S *) ego_;
Chris@10 223 P *pln;
Chris@10 224 plan *cld = (plan *) 0;
Chris@10 225 plan *cldrest = (plan *) 0;
Chris@10 226 const problem_rdft2 *p = (const problem_rdft2 *) p_;
Chris@10 227 R *bufs = (R *) 0;
Chris@10 228 INT nbuf = 0, bufdist, n, vl;
Chris@10 229 INT ivs, ovs, rs, id, od;
Chris@10 230
Chris@10 231 static const plan_adt padt = {
Chris@10 232 X(rdft2_solve), awake, print, destroy
Chris@10 233 };
Chris@10 234
Chris@10 235 if (!applicable(p_, ego, plnr))
Chris@10 236 goto nada;
Chris@10 237
Chris@10 238 n = p->sz->dims[0].n;
Chris@10 239 X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
Chris@10 240
Chris@10 241 nbuf = X(imax)(X(nbuf)(n, vl, 0), min_nbuf(p, n, vl));
Chris@10 242 bufdist = X(bufdist)(n, vl);
Chris@10 243 A(nbuf > 0);
Chris@10 244
Chris@10 245 /* initial allocation for the purpose of planning */
Chris@10 246 bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
Chris@10 247
Chris@10 248 id = ivs * (nbuf * (vl / nbuf));
Chris@10 249 od = ovs * (nbuf * (vl / nbuf));
Chris@10 250
Chris@10 251 if (p->kind == R2HC) {
Chris@10 252 cld = X(mkplan_f_d)(
Chris@10 253 plnr,
Chris@10 254 X(mkproblem_rdft_d)(
Chris@10 255 X(mktensor_1d)(n, p->sz->dims[0].is/2, 1),
Chris@10 256 X(mktensor_1d)(nbuf, ivs, bufdist),
Chris@10 257 TAINT(p->r0, ivs * nbuf), bufs, &p->kind),
Chris@10 258 0, 0, (p->r0 == p->cr) ? NO_DESTROY_INPUT : 0);
Chris@10 259 if (!cld) goto nada;
Chris@10 260 X(ifree)(bufs); bufs = 0;
Chris@10 261
Chris@10 262 cldrest = X(mkplan_d)(plnr,
Chris@10 263 X(mkproblem_rdft2_d)(
Chris@10 264 X(tensor_copy)(p->sz),
Chris@10 265 X(mktensor_1d)(vl % nbuf, ivs, ovs),
Chris@10 266 p->r0 + id, p->r1 + id,
Chris@10 267 p->cr + od, p->ci + od,
Chris@10 268 p->kind));
Chris@10 269 if (!cldrest) goto nada;
Chris@10 270
Chris@10 271 pln = MKPLAN_RDFT2(P, &padt, apply_r2hc);
Chris@10 272 } else {
Chris@10 273 A(p->kind == HC2R);
Chris@10 274 cld = X(mkplan_f_d)(
Chris@10 275 plnr,
Chris@10 276 X(mkproblem_rdft_d)(
Chris@10 277 X(mktensor_1d)(n, 1, p->sz->dims[0].os/2),
Chris@10 278 X(mktensor_1d)(nbuf, bufdist, ovs),
Chris@10 279 bufs, TAINT(p->r0, ovs * nbuf), &p->kind),
Chris@10 280 0, 0, NO_DESTROY_INPUT); /* always ok to destroy bufs */
Chris@10 281 if (!cld) goto nada;
Chris@10 282 X(ifree)(bufs); bufs = 0;
Chris@10 283
Chris@10 284 cldrest = X(mkplan_d)(plnr,
Chris@10 285 X(mkproblem_rdft2_d)(
Chris@10 286 X(tensor_copy)(p->sz),
Chris@10 287 X(mktensor_1d)(vl % nbuf, ivs, ovs),
Chris@10 288 p->r0 + od, p->r1 + od,
Chris@10 289 p->cr + id, p->ci + id,
Chris@10 290 p->kind));
Chris@10 291 if (!cldrest) goto nada;
Chris@10 292 pln = MKPLAN_RDFT2(P, &padt, apply_hc2r);
Chris@10 293 }
Chris@10 294
Chris@10 295 pln->cld = cld;
Chris@10 296 pln->cldrest = cldrest;
Chris@10 297 pln->n = n;
Chris@10 298 pln->vl = vl;
Chris@10 299 pln->ivs = ivs;
Chris@10 300 pln->ovs = ovs;
Chris@10 301 X(rdft2_strides)(p->kind, &p->sz->dims[0], &rs, &pln->cs);
Chris@10 302 pln->nbuf = nbuf;
Chris@10 303 pln->bufdist = bufdist;
Chris@10 304
Chris@10 305 X(ops_madd)(vl / nbuf, &cld->ops, &cldrest->ops,
Chris@10 306 &pln->super.super.ops);
Chris@10 307 pln->super.super.ops.other += (p->kind == R2HC ? (n + 2) : n) * vl;
Chris@10 308
Chris@10 309 return &(pln->super.super);
Chris@10 310
Chris@10 311 nada:
Chris@10 312 X(ifree0)(bufs);
Chris@10 313 X(plan_destroy_internal)(cldrest);
Chris@10 314 X(plan_destroy_internal)(cld);
Chris@10 315 return (plan *) 0;
Chris@10 316 }
Chris@10 317
Chris@10 318 static solver *mksolver(void)
Chris@10 319 {
Chris@10 320 static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 };
Chris@10 321 S *slv = MKSOLVER(S, &sadt);
Chris@10 322 return &(slv->super);
Chris@10 323 }
Chris@10 324
Chris@10 325 void X(rdft2_rdft_register)(planner *p)
Chris@10 326 {
Chris@10 327 REGISTER_SOLVER(p, mksolver());
Chris@10 328 }