Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: Chris@10: #include "rdft.h" Chris@10: Chris@10: typedef struct { Chris@10: solver super; Chris@10: } S; Chris@10: Chris@10: typedef struct { Chris@10: plan_rdft2 super; Chris@10: Chris@10: plan *cld, *cldrest; Chris@10: INT n, vl, nbuf, bufdist; Chris@10: INT cs, ivs, ovs; Chris@10: } P; Chris@10: Chris@10: /***************************************************************************/ Chris@10: Chris@10: /* FIXME: have alternate copy functions that push a vector loop inside Chris@10: the n loops? */ Chris@10: Chris@10: /* copy halfcomplex array r (contiguous) to complex (strided) array rio/iio. */ Chris@10: static void hc2c(INT n, R *r, R *rio, R *iio, INT os) Chris@10: { Chris@10: INT i; Chris@10: Chris@10: rio[0] = r[0]; Chris@10: iio[0] = 0; Chris@10: Chris@10: for (i = 1; i + i < n; ++i) { Chris@10: rio[i * os] = r[i]; Chris@10: iio[i * os] = r[n - i]; Chris@10: } Chris@10: Chris@10: if (i + i == n) { /* store the Nyquist frequency */ Chris@10: rio[i * os] = r[i]; Chris@10: iio[i * os] = K(0.0); Chris@10: } Chris@10: } Chris@10: Chris@10: /* reverse of hc2c */ Chris@10: static void c2hc(INT n, R *rio, R *iio, INT is, R *r) Chris@10: { Chris@10: INT i; Chris@10: Chris@10: r[0] = rio[0]; Chris@10: Chris@10: for (i = 1; i + i < n; ++i) { Chris@10: r[i] = rio[i * is]; Chris@10: r[n - i] = iio[i * is]; Chris@10: } Chris@10: Chris@10: if (i + i == n) /* store the Nyquist frequency */ Chris@10: r[i] = rio[i * is]; Chris@10: } Chris@10: Chris@10: /***************************************************************************/ Chris@10: Chris@10: static void apply_r2hc(const plan *ego_, R *r0, R *r1, R *cr, R *ci) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@10: INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist; Chris@10: INT n = ego->n; Chris@10: INT ivs = ego->ivs, ovs = ego->ovs, os = ego->cs; Chris@10: R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS); Chris@10: plan_rdft2 *cldrest; Chris@10: Chris@10: for (i = nbuf; i <= vl; i += nbuf) { Chris@10: /* transform to bufs: */ Chris@10: cld->apply((plan *) cld, r0, bufs); Chris@10: r0 += ivs * nbuf; r1 += ivs * nbuf; Chris@10: Chris@10: /* copy back */ Chris@10: for (j = 0; j < nbuf; ++j, cr += ovs, ci += ovs) Chris@10: hc2c(n, bufs + j*bufdist, cr, ci, os); Chris@10: } Chris@10: Chris@10: X(ifree)(bufs); Chris@10: Chris@10: /* Do the remaining transforms, if any: */ Chris@10: cldrest = (plan_rdft2 *) ego->cldrest; Chris@10: cldrest->apply((plan *) cldrest, r0, r1, cr, ci); Chris@10: } Chris@10: Chris@10: static void apply_hc2r(const plan *ego_, R *r0, R *r1, R *cr, R *ci) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@10: INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist; Chris@10: INT n = ego->n; Chris@10: INT ivs = ego->ivs, ovs = ego->ovs, is = ego->cs; Chris@10: R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS); Chris@10: plan_rdft2 *cldrest; Chris@10: Chris@10: for (i = nbuf; i <= vl; i += nbuf) { Chris@10: /* copy to bufs */ Chris@10: for (j = 0; j < nbuf; ++j, cr += ivs, ci += ivs) Chris@10: c2hc(n, cr, ci, is, bufs + j*bufdist); Chris@10: Chris@10: /* transform back: */ Chris@10: cld->apply((plan *) cld, bufs, r0); Chris@10: r0 += ovs * nbuf; r1 += ovs * nbuf; Chris@10: } Chris@10: Chris@10: X(ifree)(bufs); Chris@10: Chris@10: /* Do the remaining transforms, if any: */ Chris@10: cldrest = (plan_rdft2 *) ego->cldrest; Chris@10: cldrest->apply((plan *) cldrest, r0, r1, cr, ci); Chris@10: } Chris@10: Chris@10: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: Chris@10: X(plan_awake)(ego->cld, wakefulness); Chris@10: X(plan_awake)(ego->cldrest, wakefulness); Chris@10: } Chris@10: Chris@10: static void destroy(plan *ego_) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_destroy_internal)(ego->cldrest); Chris@10: X(plan_destroy_internal)(ego->cld); Chris@10: } Chris@10: Chris@10: static void print(const plan *ego_, printer *p) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: p->print(p, "(rdft2-rdft-%s-%D%v/%D-%D%(%p%)%(%p%))", Chris@10: ego->super.apply == apply_r2hc ? "r2hc" : "hc2r", Chris@10: ego->n, ego->nbuf, Chris@10: ego->vl, ego->bufdist % ego->n, Chris@10: ego->cld, ego->cldrest); Chris@10: } Chris@10: Chris@10: static INT min_nbuf(const problem_rdft2 *p, INT n, INT vl) Chris@10: { Chris@10: INT is, os, ivs, ovs; Chris@10: Chris@10: if (p->r0 != p->cr) Chris@10: return 1; Chris@10: if (X(rdft2_inplace_strides(p, RNK_MINFTY))) Chris@10: return 1; Chris@10: A(p->vecsz->rnk == 1); /* rank 0 and MINFTY are inplace */ Chris@10: Chris@10: X(rdft2_strides)(p->kind, p->sz->dims, &is, &os); Chris@10: X(rdft2_strides)(p->kind, p->vecsz->dims, &ivs, &ovs); Chris@10: Chris@10: /* handle one potentially common case: "contiguous" real and Chris@10: complex arrays, which overlap because of the differing sizes. */ Chris@10: if (n * X(iabs)(is) <= X(iabs)(ivs) Chris@10: && (n/2 + 1) * X(iabs)(os) <= X(iabs)(ovs) Chris@10: && ( ((p->cr - p->ci) <= X(iabs)(os)) || Chris@10: ((p->ci - p->cr) <= X(iabs)(os)) ) Chris@10: && ivs > 0 && ovs > 0) { Chris@10: INT vsmin = X(imin)(ivs, ovs); Chris@10: INT vsmax = X(imax)(ivs, ovs); Chris@10: return(((vsmax - vsmin) * vl + vsmin - 1) / vsmin); Chris@10: } Chris@10: Chris@10: return vl; /* punt: just buffer the whole vector */ Chris@10: } Chris@10: Chris@10: static int applicable0(const problem *p_, const S *ego, const planner *plnr) Chris@10: { Chris@10: const problem_rdft2 *p = (const problem_rdft2 *) p_; Chris@10: UNUSED(ego); Chris@10: return(1 Chris@10: && p->vecsz->rnk <= 1 Chris@10: && p->sz->rnk == 1 Chris@10: Chris@10: /* FIXME: does it make sense to do R2HCII ? */ Chris@10: && (p->kind == R2HC || p->kind == HC2R) Chris@10: Chris@10: /* real strides must allow for reduction to rdft */ Chris@10: && (2 * (p->r1 - p->r0) == Chris@10: (((p->kind == R2HC) ? p->sz->dims[0].is : p->sz->dims[0].os))) Chris@10: Chris@10: && !(X(toobig)(p->sz->dims[0].n) && CONSERVE_MEMORYP(plnr)) Chris@10: ); Chris@10: } Chris@10: Chris@10: static int applicable(const problem *p_, const S *ego, const planner *plnr) Chris@10: { Chris@10: const problem_rdft2 *p; Chris@10: Chris@10: if (NO_BUFFERINGP(plnr)) return 0; Chris@10: Chris@10: if (!applicable0(p_, ego, plnr)) return 0; Chris@10: Chris@10: p = (const problem_rdft2 *) p_; Chris@10: if (NO_UGLYP(plnr)) { Chris@10: if (p->r0 != p->cr) return 0; Chris@10: if (X(toobig)(p->sz->dims[0].n)) return 0; Chris@10: } Chris@10: return 1; Chris@10: } Chris@10: Chris@10: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@10: { Chris@10: const S *ego = (const S *) ego_; Chris@10: P *pln; Chris@10: plan *cld = (plan *) 0; Chris@10: plan *cldrest = (plan *) 0; Chris@10: const problem_rdft2 *p = (const problem_rdft2 *) p_; Chris@10: R *bufs = (R *) 0; Chris@10: INT nbuf = 0, bufdist, n, vl; Chris@10: INT ivs, ovs, rs, id, od; Chris@10: Chris@10: static const plan_adt padt = { Chris@10: X(rdft2_solve), awake, print, destroy Chris@10: }; Chris@10: Chris@10: if (!applicable(p_, ego, plnr)) Chris@10: goto nada; Chris@10: Chris@10: n = p->sz->dims[0].n; Chris@10: X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); Chris@10: Chris@10: nbuf = X(imax)(X(nbuf)(n, vl, 0), min_nbuf(p, n, vl)); Chris@10: bufdist = X(bufdist)(n, vl); Chris@10: A(nbuf > 0); Chris@10: Chris@10: /* initial allocation for the purpose of planning */ Chris@10: bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS); Chris@10: Chris@10: id = ivs * (nbuf * (vl / nbuf)); Chris@10: od = ovs * (nbuf * (vl / nbuf)); Chris@10: Chris@10: if (p->kind == R2HC) { Chris@10: cld = X(mkplan_f_d)( Chris@10: plnr, Chris@10: X(mkproblem_rdft_d)( Chris@10: X(mktensor_1d)(n, p->sz->dims[0].is/2, 1), Chris@10: X(mktensor_1d)(nbuf, ivs, bufdist), Chris@10: TAINT(p->r0, ivs * nbuf), bufs, &p->kind), Chris@10: 0, 0, (p->r0 == p->cr) ? NO_DESTROY_INPUT : 0); Chris@10: if (!cld) goto nada; Chris@10: X(ifree)(bufs); bufs = 0; Chris@10: Chris@10: cldrest = X(mkplan_d)(plnr, Chris@10: X(mkproblem_rdft2_d)( Chris@10: X(tensor_copy)(p->sz), Chris@10: X(mktensor_1d)(vl % nbuf, ivs, ovs), Chris@10: p->r0 + id, p->r1 + id, Chris@10: p->cr + od, p->ci + od, Chris@10: p->kind)); Chris@10: if (!cldrest) goto nada; Chris@10: Chris@10: pln = MKPLAN_RDFT2(P, &padt, apply_r2hc); Chris@10: } else { Chris@10: A(p->kind == HC2R); Chris@10: cld = X(mkplan_f_d)( Chris@10: plnr, Chris@10: X(mkproblem_rdft_d)( Chris@10: X(mktensor_1d)(n, 1, p->sz->dims[0].os/2), Chris@10: X(mktensor_1d)(nbuf, bufdist, ovs), Chris@10: bufs, TAINT(p->r0, ovs * nbuf), &p->kind), Chris@10: 0, 0, NO_DESTROY_INPUT); /* always ok to destroy bufs */ Chris@10: if (!cld) goto nada; Chris@10: X(ifree)(bufs); bufs = 0; Chris@10: Chris@10: cldrest = X(mkplan_d)(plnr, Chris@10: X(mkproblem_rdft2_d)( Chris@10: X(tensor_copy)(p->sz), Chris@10: X(mktensor_1d)(vl % nbuf, ivs, ovs), Chris@10: p->r0 + od, p->r1 + od, Chris@10: p->cr + id, p->ci + id, Chris@10: p->kind)); Chris@10: if (!cldrest) goto nada; Chris@10: pln = MKPLAN_RDFT2(P, &padt, apply_hc2r); Chris@10: } Chris@10: Chris@10: pln->cld = cld; Chris@10: pln->cldrest = cldrest; Chris@10: pln->n = n; Chris@10: pln->vl = vl; Chris@10: pln->ivs = ivs; Chris@10: pln->ovs = ovs; Chris@10: X(rdft2_strides)(p->kind, &p->sz->dims[0], &rs, &pln->cs); Chris@10: pln->nbuf = nbuf; Chris@10: pln->bufdist = bufdist; Chris@10: Chris@10: X(ops_madd)(vl / nbuf, &cld->ops, &cldrest->ops, Chris@10: &pln->super.super.ops); Chris@10: pln->super.super.ops.other += (p->kind == R2HC ? (n + 2) : n) * vl; Chris@10: Chris@10: return &(pln->super.super); Chris@10: Chris@10: nada: Chris@10: X(ifree0)(bufs); Chris@10: X(plan_destroy_internal)(cldrest); Chris@10: X(plan_destroy_internal)(cld); Chris@10: return (plan *) 0; Chris@10: } Chris@10: Chris@10: static solver *mksolver(void) Chris@10: { Chris@10: static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 }; Chris@10: S *slv = MKSOLVER(S, &sadt); Chris@10: return &(slv->super); Chris@10: } Chris@10: Chris@10: void X(rdft2_rdft_register)(planner *p) Chris@10: { Chris@10: REGISTER_SOLVER(p, mksolver()); Chris@10: }