Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/rdft2-rdft.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/rdft2-rdft.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,328 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + + +#include "rdft.h" + +typedef struct { + solver super; +} S; + +typedef struct { + plan_rdft2 super; + + plan *cld, *cldrest; + INT n, vl, nbuf, bufdist; + INT cs, ivs, ovs; +} P; + +/***************************************************************************/ + +/* FIXME: have alternate copy functions that push a vector loop inside + the n loops? */ + +/* copy halfcomplex array r (contiguous) to complex (strided) array rio/iio. */ +static void hc2c(INT n, R *r, R *rio, R *iio, INT os) +{ + INT i; + + rio[0] = r[0]; + iio[0] = 0; + + for (i = 1; i + i < n; ++i) { + rio[i * os] = r[i]; + iio[i * os] = r[n - i]; + } + + if (i + i == n) { /* store the Nyquist frequency */ + rio[i * os] = r[i]; + iio[i * os] = K(0.0); + } +} + +/* reverse of hc2c */ +static void c2hc(INT n, R *rio, R *iio, INT is, R *r) +{ + INT i; + + r[0] = rio[0]; + + for (i = 1; i + i < n; ++i) { + r[i] = rio[i * is]; + r[n - i] = iio[i * is]; + } + + if (i + i == n) /* store the Nyquist frequency */ + r[i] = rio[i * is]; +} + +/***************************************************************************/ + +static void apply_r2hc(const plan *ego_, R *r0, R *r1, R *cr, R *ci) +{ + const P *ego = (const P *) ego_; + plan_rdft *cld = (plan_rdft *) ego->cld; + INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist; + INT n = ego->n; + INT ivs = ego->ivs, ovs = ego->ovs, os = ego->cs; + R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS); + plan_rdft2 *cldrest; + + for (i = nbuf; i <= vl; i += nbuf) { + /* transform to bufs: */ + cld->apply((plan *) cld, r0, bufs); + r0 += ivs * nbuf; r1 += ivs * nbuf; + + /* copy back */ + for (j = 0; j < nbuf; ++j, cr += ovs, ci += ovs) + hc2c(n, bufs + j*bufdist, cr, ci, os); + } + + X(ifree)(bufs); + + /* Do the remaining transforms, if any: */ + cldrest = (plan_rdft2 *) ego->cldrest; + cldrest->apply((plan *) cldrest, r0, r1, cr, ci); +} + +static void apply_hc2r(const plan *ego_, R *r0, R *r1, R *cr, R *ci) +{ + const P *ego = (const P *) ego_; + plan_rdft *cld = (plan_rdft *) ego->cld; + INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist; + INT n = ego->n; + INT ivs = ego->ivs, ovs = ego->ovs, is = ego->cs; + R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS); + plan_rdft2 *cldrest; + + for (i = nbuf; i <= vl; i += nbuf) { + /* copy to bufs */ + for (j = 0; j < nbuf; ++j, cr += ivs, ci += ivs) + c2hc(n, cr, ci, is, bufs + j*bufdist); + + /* transform back: */ + cld->apply((plan *) cld, bufs, r0); + r0 += ovs * nbuf; r1 += ovs * nbuf; + } + + X(ifree)(bufs); + + /* Do the remaining transforms, if any: */ + cldrest = (plan_rdft2 *) ego->cldrest; + cldrest->apply((plan *) cldrest, r0, r1, cr, ci); +} + +static void awake(plan *ego_, enum wakefulness wakefulness) +{ + P *ego = (P *) ego_; + + X(plan_awake)(ego->cld, wakefulness); + X(plan_awake)(ego->cldrest, wakefulness); +} + +static void destroy(plan *ego_) +{ + P *ego = (P *) ego_; + X(plan_destroy_internal)(ego->cldrest); + X(plan_destroy_internal)(ego->cld); +} + +static void print(const plan *ego_, printer *p) +{ + const P *ego = (const P *) ego_; + p->print(p, "(rdft2-rdft-%s-%D%v/%D-%D%(%p%)%(%p%))", + ego->super.apply == apply_r2hc ? "r2hc" : "hc2r", + ego->n, ego->nbuf, + ego->vl, ego->bufdist % ego->n, + ego->cld, ego->cldrest); +} + +static INT min_nbuf(const problem_rdft2 *p, INT n, INT vl) +{ + INT is, os, ivs, ovs; + + if (p->r0 != p->cr) + return 1; + if (X(rdft2_inplace_strides(p, RNK_MINFTY))) + return 1; + A(p->vecsz->rnk == 1); /* rank 0 and MINFTY are inplace */ + + X(rdft2_strides)(p->kind, p->sz->dims, &is, &os); + X(rdft2_strides)(p->kind, p->vecsz->dims, &ivs, &ovs); + + /* handle one potentially common case: "contiguous" real and + complex arrays, which overlap because of the differing sizes. */ + if (n * X(iabs)(is) <= X(iabs)(ivs) + && (n/2 + 1) * X(iabs)(os) <= X(iabs)(ovs) + && ( ((p->cr - p->ci) <= X(iabs)(os)) || + ((p->ci - p->cr) <= X(iabs)(os)) ) + && ivs > 0 && ovs > 0) { + INT vsmin = X(imin)(ivs, ovs); + INT vsmax = X(imax)(ivs, ovs); + return(((vsmax - vsmin) * vl + vsmin - 1) / vsmin); + } + + return vl; /* punt: just buffer the whole vector */ +} + +static int applicable0(const problem *p_, const S *ego, const planner *plnr) +{ + const problem_rdft2 *p = (const problem_rdft2 *) p_; + UNUSED(ego); + return(1 + && p->vecsz->rnk <= 1 + && p->sz->rnk == 1 + + /* FIXME: does it make sense to do R2HCII ? */ + && (p->kind == R2HC || p->kind == HC2R) + + /* real strides must allow for reduction to rdft */ + && (2 * (p->r1 - p->r0) == + (((p->kind == R2HC) ? p->sz->dims[0].is : p->sz->dims[0].os))) + + && !(X(toobig)(p->sz->dims[0].n) && CONSERVE_MEMORYP(plnr)) + ); +} + +static int applicable(const problem *p_, const S *ego, const planner *plnr) +{ + const problem_rdft2 *p; + + if (NO_BUFFERINGP(plnr)) return 0; + + if (!applicable0(p_, ego, plnr)) return 0; + + p = (const problem_rdft2 *) p_; + if (NO_UGLYP(plnr)) { + if (p->r0 != p->cr) return 0; + if (X(toobig)(p->sz->dims[0].n)) return 0; + } + return 1; +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ + const S *ego = (const S *) ego_; + P *pln; + plan *cld = (plan *) 0; + plan *cldrest = (plan *) 0; + const problem_rdft2 *p = (const problem_rdft2 *) p_; + R *bufs = (R *) 0; + INT nbuf = 0, bufdist, n, vl; + INT ivs, ovs, rs, id, od; + + static const plan_adt padt = { + X(rdft2_solve), awake, print, destroy + }; + + if (!applicable(p_, ego, plnr)) + goto nada; + + n = p->sz->dims[0].n; + X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); + + nbuf = X(imax)(X(nbuf)(n, vl, 0), min_nbuf(p, n, vl)); + bufdist = X(bufdist)(n, vl); + A(nbuf > 0); + + /* initial allocation for the purpose of planning */ + bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS); + + id = ivs * (nbuf * (vl / nbuf)); + od = ovs * (nbuf * (vl / nbuf)); + + if (p->kind == R2HC) { + cld = X(mkplan_f_d)( + plnr, + X(mkproblem_rdft_d)( + X(mktensor_1d)(n, p->sz->dims[0].is/2, 1), + X(mktensor_1d)(nbuf, ivs, bufdist), + TAINT(p->r0, ivs * nbuf), bufs, &p->kind), + 0, 0, (p->r0 == p->cr) ? NO_DESTROY_INPUT : 0); + if (!cld) goto nada; + X(ifree)(bufs); bufs = 0; + + cldrest = X(mkplan_d)(plnr, + X(mkproblem_rdft2_d)( + X(tensor_copy)(p->sz), + X(mktensor_1d)(vl % nbuf, ivs, ovs), + p->r0 + id, p->r1 + id, + p->cr + od, p->ci + od, + p->kind)); + if (!cldrest) goto nada; + + pln = MKPLAN_RDFT2(P, &padt, apply_r2hc); + } else { + A(p->kind == HC2R); + cld = X(mkplan_f_d)( + plnr, + X(mkproblem_rdft_d)( + X(mktensor_1d)(n, 1, p->sz->dims[0].os/2), + X(mktensor_1d)(nbuf, bufdist, ovs), + bufs, TAINT(p->r0, ovs * nbuf), &p->kind), + 0, 0, NO_DESTROY_INPUT); /* always ok to destroy bufs */ + if (!cld) goto nada; + X(ifree)(bufs); bufs = 0; + + cldrest = X(mkplan_d)(plnr, + X(mkproblem_rdft2_d)( + X(tensor_copy)(p->sz), + X(mktensor_1d)(vl % nbuf, ivs, ovs), + p->r0 + od, p->r1 + od, + p->cr + id, p->ci + id, + p->kind)); + if (!cldrest) goto nada; + pln = MKPLAN_RDFT2(P, &padt, apply_hc2r); + } + + pln->cld = cld; + pln->cldrest = cldrest; + pln->n = n; + pln->vl = vl; + pln->ivs = ivs; + pln->ovs = ovs; + X(rdft2_strides)(p->kind, &p->sz->dims[0], &rs, &pln->cs); + pln->nbuf = nbuf; + pln->bufdist = bufdist; + + X(ops_madd)(vl / nbuf, &cld->ops, &cldrest->ops, + &pln->super.super.ops); + pln->super.super.ops.other += (p->kind == R2HC ? (n + 2) : n) * vl; + + return &(pln->super.super); + + nada: + X(ifree0)(bufs); + X(plan_destroy_internal)(cldrest); + X(plan_destroy_internal)(cld); + return (plan *) 0; +} + +static solver *mksolver(void) +{ + static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 }; + S *slv = MKSOLVER(S, &sadt); + return &(slv->super); +} + +void X(rdft2_rdft_register)(planner *p) +{ + REGISTER_SOLVER(p, mksolver()); +}