diff src/fftw-3.3.3/rdft/rdft2-rdft.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/rdft/rdft2-rdft.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,328 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+
+#include "rdft.h"
+
+typedef struct {
+     solver super;
+} S;
+
+typedef struct {
+     plan_rdft2 super;
+
+     plan *cld, *cldrest;
+     INT n, vl, nbuf, bufdist;
+     INT cs, ivs, ovs;
+} P;
+
+/***************************************************************************/
+
+/* FIXME: have alternate copy functions that push a vector loop inside
+   the n loops? */
+
+/* copy halfcomplex array r (contiguous) to complex (strided) array rio/iio. */
+static void hc2c(INT n, R *r, R *rio, R *iio, INT os)
+{
+     INT i;
+
+     rio[0] = r[0];
+     iio[0] = 0;
+
+     for (i = 1; i + i < n; ++i) {
+	  rio[i * os] = r[i];
+	  iio[i * os] = r[n - i];
+     }
+
+     if (i + i == n) {	/* store the Nyquist frequency */
+	  rio[i * os] = r[i];
+	  iio[i * os] = K(0.0);
+     }
+}
+
+/* reverse of hc2c */
+static void c2hc(INT n, R *rio, R *iio, INT is, R *r)
+{
+     INT i;
+
+     r[0] = rio[0];
+
+     for (i = 1; i + i < n; ++i) {
+	  r[i] = rio[i * is];
+	  r[n - i] = iio[i * is];
+     }
+
+     if (i + i == n)		/* store the Nyquist frequency */
+	  r[i] = rio[i * is];
+}
+
+/***************************************************************************/
+
+static void apply_r2hc(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
+{
+     const P *ego = (const P *) ego_;
+     plan_rdft *cld = (plan_rdft *) ego->cld;
+     INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist;
+     INT n = ego->n;
+     INT ivs = ego->ivs, ovs = ego->ovs, os = ego->cs;
+     R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
+     plan_rdft2 *cldrest;
+
+     for (i = nbuf; i <= vl; i += nbuf) {
+          /* transform to bufs: */
+          cld->apply((plan *) cld, r0, bufs);
+	  r0 += ivs * nbuf; r1 += ivs * nbuf;
+
+          /* copy back */
+	  for (j = 0; j < nbuf; ++j, cr += ovs, ci += ovs)
+	       hc2c(n, bufs + j*bufdist, cr, ci, os);
+     }
+
+     X(ifree)(bufs);
+
+     /* Do the remaining transforms, if any: */
+     cldrest = (plan_rdft2 *) ego->cldrest;
+     cldrest->apply((plan *) cldrest, r0, r1, cr, ci);
+}
+
+static void apply_hc2r(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
+{
+     const P *ego = (const P *) ego_;
+     plan_rdft *cld = (plan_rdft *) ego->cld;
+     INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist;
+     INT n = ego->n;
+     INT ivs = ego->ivs, ovs = ego->ovs, is = ego->cs;
+     R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
+     plan_rdft2 *cldrest;
+
+     for (i = nbuf; i <= vl; i += nbuf) {
+          /* copy to bufs */
+	  for (j = 0; j < nbuf; ++j, cr += ivs, ci += ivs)
+	       c2hc(n, cr, ci, is, bufs + j*bufdist);
+
+          /* transform back: */
+          cld->apply((plan *) cld, bufs, r0);
+	  r0 += ovs * nbuf; r1 += ovs * nbuf;
+     }
+
+     X(ifree)(bufs);
+
+     /* Do the remaining transforms, if any: */
+     cldrest = (plan_rdft2 *) ego->cldrest;
+     cldrest->apply((plan *) cldrest, r0, r1, cr, ci);
+}
+
+static void awake(plan *ego_, enum wakefulness wakefulness)
+{
+     P *ego = (P *) ego_;
+
+     X(plan_awake)(ego->cld, wakefulness);
+     X(plan_awake)(ego->cldrest, wakefulness);
+}
+
+static void destroy(plan *ego_)
+{
+     P *ego = (P *) ego_;
+     X(plan_destroy_internal)(ego->cldrest);
+     X(plan_destroy_internal)(ego->cld);
+}
+
+static void print(const plan *ego_, printer *p)
+{
+     const P *ego = (const P *) ego_;
+     p->print(p, "(rdft2-rdft-%s-%D%v/%D-%D%(%p%)%(%p%))",
+	      ego->super.apply == apply_r2hc ? "r2hc" : "hc2r",
+              ego->n, ego->nbuf,
+              ego->vl, ego->bufdist % ego->n,
+              ego->cld, ego->cldrest);
+}
+
+static INT min_nbuf(const problem_rdft2 *p, INT n, INT vl)
+{
+     INT is, os, ivs, ovs;
+
+     if (p->r0 != p->cr)
+	  return 1;
+     if (X(rdft2_inplace_strides(p, RNK_MINFTY)))
+	  return 1;
+     A(p->vecsz->rnk == 1); /*  rank 0 and MINFTY are inplace */
+
+     X(rdft2_strides)(p->kind, p->sz->dims, &is, &os);
+     X(rdft2_strides)(p->kind, p->vecsz->dims, &ivs, &ovs);
+     
+     /* handle one potentially common case: "contiguous" real and
+	complex arrays, which overlap because of the differing sizes. */
+     if (n * X(iabs)(is) <= X(iabs)(ivs)
+	 && (n/2 + 1) * X(iabs)(os) <= X(iabs)(ovs)
+	 && ( ((p->cr - p->ci) <= X(iabs)(os)) || 
+	      ((p->ci - p->cr) <= X(iabs)(os)) )
+	 && ivs > 0 && ovs > 0) {
+	  INT vsmin = X(imin)(ivs, ovs);
+	  INT vsmax = X(imax)(ivs, ovs);
+	  return(((vsmax - vsmin) * vl + vsmin - 1) / vsmin);
+     }
+
+     return vl; /* punt: just buffer the whole vector */
+}
+
+static int applicable0(const problem *p_, const S *ego, const planner *plnr)
+{
+     const problem_rdft2 *p = (const problem_rdft2 *) p_;
+     UNUSED(ego);
+     return(1
+	    && p->vecsz->rnk <= 1
+	    && p->sz->rnk == 1
+
+	    /* FIXME: does it make sense to do R2HCII ? */
+	    && (p->kind == R2HC || p->kind == HC2R)
+
+	    /* real strides must allow for reduction to rdft */
+	    && (2 * (p->r1 - p->r0) ==
+		(((p->kind == R2HC) ? p->sz->dims[0].is : p->sz->dims[0].os)))
+
+	    && !(X(toobig)(p->sz->dims[0].n) && CONSERVE_MEMORYP(plnr))
+	  );
+}
+
+static int applicable(const problem *p_, const S *ego, const planner *plnr)
+{
+     const problem_rdft2 *p;
+
+     if (NO_BUFFERINGP(plnr)) return 0;
+
+     if (!applicable0(p_, ego, plnr)) return 0;
+
+     p = (const problem_rdft2 *) p_;
+     if (NO_UGLYP(plnr)) {
+	  if (p->r0 != p->cr) return 0;
+	  if (X(toobig)(p->sz->dims[0].n)) return 0;
+     }
+     return 1;
+}
+
+static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
+{
+     const S *ego = (const S *) ego_;
+     P *pln;
+     plan *cld = (plan *) 0;
+     plan *cldrest = (plan *) 0;
+     const problem_rdft2 *p = (const problem_rdft2 *) p_;
+     R *bufs = (R *) 0;
+     INT nbuf = 0, bufdist, n, vl;
+     INT ivs, ovs, rs, id, od;
+
+     static const plan_adt padt = {
+	  X(rdft2_solve), awake, print, destroy
+     };
+
+     if (!applicable(p_, ego, plnr))
+          goto nada;
+
+     n = p->sz->dims[0].n;
+     X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
+
+     nbuf = X(imax)(X(nbuf)(n, vl, 0), min_nbuf(p, n, vl));
+     bufdist = X(bufdist)(n, vl);
+     A(nbuf > 0);
+
+     /* initial allocation for the purpose of planning */
+     bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
+
+     id = ivs * (nbuf * (vl / nbuf));
+     od = ovs * (nbuf * (vl / nbuf));
+
+     if (p->kind == R2HC) {
+	  cld = X(mkplan_f_d)(
+	       plnr,
+	       X(mkproblem_rdft_d)(
+		    X(mktensor_1d)(n, p->sz->dims[0].is/2, 1),
+		    X(mktensor_1d)(nbuf, ivs, bufdist),
+		    TAINT(p->r0, ivs * nbuf), bufs, &p->kind),
+	       0, 0, (p->r0 == p->cr) ? NO_DESTROY_INPUT : 0);
+	  if (!cld) goto nada;
+	  X(ifree)(bufs); bufs = 0;
+
+	  cldrest = X(mkplan_d)(plnr, 
+				X(mkproblem_rdft2_d)(
+				     X(tensor_copy)(p->sz),
+				     X(mktensor_1d)(vl % nbuf, ivs, ovs),
+				     p->r0 + id, p->r1 + id, 
+				     p->cr + od, p->ci + od,
+				     p->kind));
+	  if (!cldrest) goto nada;
+
+	  pln = MKPLAN_RDFT2(P, &padt, apply_r2hc);
+     } else {
+	  A(p->kind == HC2R);
+	  cld = X(mkplan_f_d)(
+	       plnr,
+	       X(mkproblem_rdft_d)(
+		    X(mktensor_1d)(n, 1, p->sz->dims[0].os/2),
+		    X(mktensor_1d)(nbuf, bufdist, ovs),
+		    bufs, TAINT(p->r0, ovs * nbuf), &p->kind),
+	       0, 0, NO_DESTROY_INPUT); /* always ok to destroy bufs */
+	  if (!cld) goto nada;
+	  X(ifree)(bufs); bufs = 0;
+
+	  cldrest = X(mkplan_d)(plnr, 
+				X(mkproblem_rdft2_d)(
+				     X(tensor_copy)(p->sz),
+				     X(mktensor_1d)(vl % nbuf, ivs, ovs),
+				     p->r0 + od, p->r1 + od, 
+				     p->cr + id, p->ci + id,
+				     p->kind));
+	  if (!cldrest) goto nada;
+	  pln = MKPLAN_RDFT2(P, &padt, apply_hc2r);
+     }
+
+     pln->cld = cld;
+     pln->cldrest = cldrest;
+     pln->n = n;
+     pln->vl = vl;
+     pln->ivs = ivs;
+     pln->ovs = ovs;
+     X(rdft2_strides)(p->kind, &p->sz->dims[0], &rs, &pln->cs);
+     pln->nbuf = nbuf;
+     pln->bufdist = bufdist;
+
+     X(ops_madd)(vl / nbuf, &cld->ops, &cldrest->ops,
+		 &pln->super.super.ops);
+     pln->super.super.ops.other += (p->kind == R2HC ? (n + 2) : n) * vl;
+
+     return &(pln->super.super);
+
+ nada:
+     X(ifree0)(bufs);
+     X(plan_destroy_internal)(cldrest);
+     X(plan_destroy_internal)(cld);
+     return (plan *) 0;
+}
+
+static solver *mksolver(void)
+{
+     static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 };
+     S *slv = MKSOLVER(S, &sadt);
+     return &(slv->super);
+}
+
+void X(rdft2_rdft_register)(planner *p)
+{
+     REGISTER_SOLVER(p, mksolver());
+}