comparison src/fftw-3.3.3/rdft/rdft2-rdft.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21
22 #include "rdft.h"
23
24 typedef struct {
25 solver super;
26 } S;
27
28 typedef struct {
29 plan_rdft2 super;
30
31 plan *cld, *cldrest;
32 INT n, vl, nbuf, bufdist;
33 INT cs, ivs, ovs;
34 } P;
35
36 /***************************************************************************/
37
38 /* FIXME: have alternate copy functions that push a vector loop inside
39 the n loops? */
40
41 /* copy halfcomplex array r (contiguous) to complex (strided) array rio/iio. */
42 static void hc2c(INT n, R *r, R *rio, R *iio, INT os)
43 {
44 INT i;
45
46 rio[0] = r[0];
47 iio[0] = 0;
48
49 for (i = 1; i + i < n; ++i) {
50 rio[i * os] = r[i];
51 iio[i * os] = r[n - i];
52 }
53
54 if (i + i == n) { /* store the Nyquist frequency */
55 rio[i * os] = r[i];
56 iio[i * os] = K(0.0);
57 }
58 }
59
60 /* reverse of hc2c */
61 static void c2hc(INT n, R *rio, R *iio, INT is, R *r)
62 {
63 INT i;
64
65 r[0] = rio[0];
66
67 for (i = 1; i + i < n; ++i) {
68 r[i] = rio[i * is];
69 r[n - i] = iio[i * is];
70 }
71
72 if (i + i == n) /* store the Nyquist frequency */
73 r[i] = rio[i * is];
74 }
75
76 /***************************************************************************/
77
78 static void apply_r2hc(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
79 {
80 const P *ego = (const P *) ego_;
81 plan_rdft *cld = (plan_rdft *) ego->cld;
82 INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist;
83 INT n = ego->n;
84 INT ivs = ego->ivs, ovs = ego->ovs, os = ego->cs;
85 R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
86 plan_rdft2 *cldrest;
87
88 for (i = nbuf; i <= vl; i += nbuf) {
89 /* transform to bufs: */
90 cld->apply((plan *) cld, r0, bufs);
91 r0 += ivs * nbuf; r1 += ivs * nbuf;
92
93 /* copy back */
94 for (j = 0; j < nbuf; ++j, cr += ovs, ci += ovs)
95 hc2c(n, bufs + j*bufdist, cr, ci, os);
96 }
97
98 X(ifree)(bufs);
99
100 /* Do the remaining transforms, if any: */
101 cldrest = (plan_rdft2 *) ego->cldrest;
102 cldrest->apply((plan *) cldrest, r0, r1, cr, ci);
103 }
104
105 static void apply_hc2r(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
106 {
107 const P *ego = (const P *) ego_;
108 plan_rdft *cld = (plan_rdft *) ego->cld;
109 INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist;
110 INT n = ego->n;
111 INT ivs = ego->ivs, ovs = ego->ovs, is = ego->cs;
112 R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
113 plan_rdft2 *cldrest;
114
115 for (i = nbuf; i <= vl; i += nbuf) {
116 /* copy to bufs */
117 for (j = 0; j < nbuf; ++j, cr += ivs, ci += ivs)
118 c2hc(n, cr, ci, is, bufs + j*bufdist);
119
120 /* transform back: */
121 cld->apply((plan *) cld, bufs, r0);
122 r0 += ovs * nbuf; r1 += ovs * nbuf;
123 }
124
125 X(ifree)(bufs);
126
127 /* Do the remaining transforms, if any: */
128 cldrest = (plan_rdft2 *) ego->cldrest;
129 cldrest->apply((plan *) cldrest, r0, r1, cr, ci);
130 }
131
132 static void awake(plan *ego_, enum wakefulness wakefulness)
133 {
134 P *ego = (P *) ego_;
135
136 X(plan_awake)(ego->cld, wakefulness);
137 X(plan_awake)(ego->cldrest, wakefulness);
138 }
139
140 static void destroy(plan *ego_)
141 {
142 P *ego = (P *) ego_;
143 X(plan_destroy_internal)(ego->cldrest);
144 X(plan_destroy_internal)(ego->cld);
145 }
146
147 static void print(const plan *ego_, printer *p)
148 {
149 const P *ego = (const P *) ego_;
150 p->print(p, "(rdft2-rdft-%s-%D%v/%D-%D%(%p%)%(%p%))",
151 ego->super.apply == apply_r2hc ? "r2hc" : "hc2r",
152 ego->n, ego->nbuf,
153 ego->vl, ego->bufdist % ego->n,
154 ego->cld, ego->cldrest);
155 }
156
157 static INT min_nbuf(const problem_rdft2 *p, INT n, INT vl)
158 {
159 INT is, os, ivs, ovs;
160
161 if (p->r0 != p->cr)
162 return 1;
163 if (X(rdft2_inplace_strides(p, RNK_MINFTY)))
164 return 1;
165 A(p->vecsz->rnk == 1); /* rank 0 and MINFTY are inplace */
166
167 X(rdft2_strides)(p->kind, p->sz->dims, &is, &os);
168 X(rdft2_strides)(p->kind, p->vecsz->dims, &ivs, &ovs);
169
170 /* handle one potentially common case: "contiguous" real and
171 complex arrays, which overlap because of the differing sizes. */
172 if (n * X(iabs)(is) <= X(iabs)(ivs)
173 && (n/2 + 1) * X(iabs)(os) <= X(iabs)(ovs)
174 && ( ((p->cr - p->ci) <= X(iabs)(os)) ||
175 ((p->ci - p->cr) <= X(iabs)(os)) )
176 && ivs > 0 && ovs > 0) {
177 INT vsmin = X(imin)(ivs, ovs);
178 INT vsmax = X(imax)(ivs, ovs);
179 return(((vsmax - vsmin) * vl + vsmin - 1) / vsmin);
180 }
181
182 return vl; /* punt: just buffer the whole vector */
183 }
184
185 static int applicable0(const problem *p_, const S *ego, const planner *plnr)
186 {
187 const problem_rdft2 *p = (const problem_rdft2 *) p_;
188 UNUSED(ego);
189 return(1
190 && p->vecsz->rnk <= 1
191 && p->sz->rnk == 1
192
193 /* FIXME: does it make sense to do R2HCII ? */
194 && (p->kind == R2HC || p->kind == HC2R)
195
196 /* real strides must allow for reduction to rdft */
197 && (2 * (p->r1 - p->r0) ==
198 (((p->kind == R2HC) ? p->sz->dims[0].is : p->sz->dims[0].os)))
199
200 && !(X(toobig)(p->sz->dims[0].n) && CONSERVE_MEMORYP(plnr))
201 );
202 }
203
204 static int applicable(const problem *p_, const S *ego, const planner *plnr)
205 {
206 const problem_rdft2 *p;
207
208 if (NO_BUFFERINGP(plnr)) return 0;
209
210 if (!applicable0(p_, ego, plnr)) return 0;
211
212 p = (const problem_rdft2 *) p_;
213 if (NO_UGLYP(plnr)) {
214 if (p->r0 != p->cr) return 0;
215 if (X(toobig)(p->sz->dims[0].n)) return 0;
216 }
217 return 1;
218 }
219
220 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
221 {
222 const S *ego = (const S *) ego_;
223 P *pln;
224 plan *cld = (plan *) 0;
225 plan *cldrest = (plan *) 0;
226 const problem_rdft2 *p = (const problem_rdft2 *) p_;
227 R *bufs = (R *) 0;
228 INT nbuf = 0, bufdist, n, vl;
229 INT ivs, ovs, rs, id, od;
230
231 static const plan_adt padt = {
232 X(rdft2_solve), awake, print, destroy
233 };
234
235 if (!applicable(p_, ego, plnr))
236 goto nada;
237
238 n = p->sz->dims[0].n;
239 X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
240
241 nbuf = X(imax)(X(nbuf)(n, vl, 0), min_nbuf(p, n, vl));
242 bufdist = X(bufdist)(n, vl);
243 A(nbuf > 0);
244
245 /* initial allocation for the purpose of planning */
246 bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
247
248 id = ivs * (nbuf * (vl / nbuf));
249 od = ovs * (nbuf * (vl / nbuf));
250
251 if (p->kind == R2HC) {
252 cld = X(mkplan_f_d)(
253 plnr,
254 X(mkproblem_rdft_d)(
255 X(mktensor_1d)(n, p->sz->dims[0].is/2, 1),
256 X(mktensor_1d)(nbuf, ivs, bufdist),
257 TAINT(p->r0, ivs * nbuf), bufs, &p->kind),
258 0, 0, (p->r0 == p->cr) ? NO_DESTROY_INPUT : 0);
259 if (!cld) goto nada;
260 X(ifree)(bufs); bufs = 0;
261
262 cldrest = X(mkplan_d)(plnr,
263 X(mkproblem_rdft2_d)(
264 X(tensor_copy)(p->sz),
265 X(mktensor_1d)(vl % nbuf, ivs, ovs),
266 p->r0 + id, p->r1 + id,
267 p->cr + od, p->ci + od,
268 p->kind));
269 if (!cldrest) goto nada;
270
271 pln = MKPLAN_RDFT2(P, &padt, apply_r2hc);
272 } else {
273 A(p->kind == HC2R);
274 cld = X(mkplan_f_d)(
275 plnr,
276 X(mkproblem_rdft_d)(
277 X(mktensor_1d)(n, 1, p->sz->dims[0].os/2),
278 X(mktensor_1d)(nbuf, bufdist, ovs),
279 bufs, TAINT(p->r0, ovs * nbuf), &p->kind),
280 0, 0, NO_DESTROY_INPUT); /* always ok to destroy bufs */
281 if (!cld) goto nada;
282 X(ifree)(bufs); bufs = 0;
283
284 cldrest = X(mkplan_d)(plnr,
285 X(mkproblem_rdft2_d)(
286 X(tensor_copy)(p->sz),
287 X(mktensor_1d)(vl % nbuf, ivs, ovs),
288 p->r0 + od, p->r1 + od,
289 p->cr + id, p->ci + id,
290 p->kind));
291 if (!cldrest) goto nada;
292 pln = MKPLAN_RDFT2(P, &padt, apply_hc2r);
293 }
294
295 pln->cld = cld;
296 pln->cldrest = cldrest;
297 pln->n = n;
298 pln->vl = vl;
299 pln->ivs = ivs;
300 pln->ovs = ovs;
301 X(rdft2_strides)(p->kind, &p->sz->dims[0], &rs, &pln->cs);
302 pln->nbuf = nbuf;
303 pln->bufdist = bufdist;
304
305 X(ops_madd)(vl / nbuf, &cld->ops, &cldrest->ops,
306 &pln->super.super.ops);
307 pln->super.super.ops.other += (p->kind == R2HC ? (n + 2) : n) * vl;
308
309 return &(pln->super.super);
310
311 nada:
312 X(ifree0)(bufs);
313 X(plan_destroy_internal)(cldrest);
314 X(plan_destroy_internal)(cld);
315 return (plan *) 0;
316 }
317
318 static solver *mksolver(void)
319 {
320 static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 };
321 S *slv = MKSOLVER(S, &sadt);
322 return &(slv->super);
323 }
324
325 void X(rdft2_rdft_register)(planner *p)
326 {
327 REGISTER_SOLVER(p, mksolver());
328 }