c@27
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@27
|
2
|
c@27
|
3 /*
|
c@27
|
4 QM Vamp Plugin Set
|
c@27
|
5
|
c@27
|
6 Centre for Digital Music, Queen Mary, University of London.
|
c@135
|
7
|
c@135
|
8 This program is free software; you can redistribute it and/or
|
c@135
|
9 modify it under the terms of the GNU General Public License as
|
c@135
|
10 published by the Free Software Foundation; either version 2 of the
|
c@135
|
11 License, or (at your option) any later version. See the file
|
c@135
|
12 COPYING included with this distribution for more information.
|
c@27
|
13 */
|
c@27
|
14
|
c@27
|
15 #include "OnsetDetect.h"
|
c@27
|
16
|
c@27
|
17 #include <dsp/onsets/DetectionFunction.h>
|
c@27
|
18 #include <dsp/onsets/PeakPicking.h>
|
c@27
|
19 #include <dsp/tempotracking/TempoTrack.h>
|
c@27
|
20
|
c@27
|
21 using std::string;
|
c@27
|
22 using std::vector;
|
c@27
|
23 using std::cerr;
|
c@27
|
24 using std::endl;
|
c@27
|
25
|
c@32
|
26 float OnsetDetector::m_preferredStepSecs = 0.01161;
|
c@27
|
27
|
c@27
|
28 class OnsetDetectorData
|
c@27
|
29 {
|
c@27
|
30 public:
|
c@27
|
31 OnsetDetectorData(const DFConfig &config) : dfConfig(config) {
|
c@27
|
32 df = new DetectionFunction(config);
|
c@27
|
33 }
|
c@27
|
34 ~OnsetDetectorData() {
|
c@27
|
35 delete df;
|
c@27
|
36 }
|
c@27
|
37 void reset() {
|
c@27
|
38 delete df;
|
c@27
|
39 df = new DetectionFunction(dfConfig);
|
c@27
|
40 dfOutput.clear();
|
c@85
|
41 origin = Vamp::RealTime::zeroTime;
|
c@27
|
42 }
|
c@27
|
43
|
c@27
|
44 DFConfig dfConfig;
|
c@27
|
45 DetectionFunction *df;
|
c@27
|
46 vector<double> dfOutput;
|
c@85
|
47 Vamp::RealTime origin;
|
c@27
|
48 };
|
c@27
|
49
|
c@27
|
50
|
c@27
|
51 OnsetDetector::OnsetDetector(float inputSampleRate) :
|
c@27
|
52 Vamp::Plugin(inputSampleRate),
|
c@27
|
53 m_d(0),
|
c@27
|
54 m_dfType(DF_COMPLEXSD),
|
c@30
|
55 m_sensitivity(50),
|
c@30
|
56 m_whiten(false)
|
c@27
|
57 {
|
c@27
|
58 }
|
c@27
|
59
|
c@27
|
60 OnsetDetector::~OnsetDetector()
|
c@27
|
61 {
|
c@27
|
62 delete m_d;
|
c@27
|
63 }
|
c@27
|
64
|
c@27
|
65 string
|
c@27
|
66 OnsetDetector::getIdentifier() const
|
c@27
|
67 {
|
c@27
|
68 return "qm-onsetdetector";
|
c@27
|
69 }
|
c@27
|
70
|
c@27
|
71 string
|
c@27
|
72 OnsetDetector::getName() const
|
c@27
|
73 {
|
c@27
|
74 return "Note Onset Detector";
|
c@27
|
75 }
|
c@27
|
76
|
c@27
|
77 string
|
c@27
|
78 OnsetDetector::getDescription() const
|
c@27
|
79 {
|
c@27
|
80 return "Estimate individual note onset positions";
|
c@27
|
81 }
|
c@27
|
82
|
c@27
|
83 string
|
c@27
|
84 OnsetDetector::getMaker() const
|
c@27
|
85 {
|
c@50
|
86 return "Queen Mary, University of London";
|
c@27
|
87 }
|
c@27
|
88
|
c@27
|
89 int
|
c@27
|
90 OnsetDetector::getPluginVersion() const
|
c@27
|
91 {
|
c@131
|
92 return 3;
|
c@27
|
93 }
|
c@27
|
94
|
c@27
|
95 string
|
c@27
|
96 OnsetDetector::getCopyright() const
|
c@27
|
97 {
|
c@118
|
98 return "Plugin by Christian Landone, Chris Duxbury and Juan Pablo Bello. Copyright (c) 2006-2009 QMUL - All Rights Reserved";
|
c@27
|
99 }
|
c@27
|
100
|
c@27
|
101 OnsetDetector::ParameterList
|
c@27
|
102 OnsetDetector::getParameterDescriptors() const
|
c@27
|
103 {
|
c@27
|
104 ParameterList list;
|
c@27
|
105
|
c@27
|
106 ParameterDescriptor desc;
|
c@27
|
107 desc.identifier = "dftype";
|
c@27
|
108 desc.name = "Onset Detection Function Type";
|
c@27
|
109 desc.description = "Method used to calculate the onset detection function";
|
c@27
|
110 desc.minValue = 0;
|
c@31
|
111 desc.maxValue = 4;
|
c@27
|
112 desc.defaultValue = 3;
|
c@27
|
113 desc.isQuantized = true;
|
c@27
|
114 desc.quantizeStep = 1;
|
c@27
|
115 desc.valueNames.push_back("High-Frequency Content");
|
c@27
|
116 desc.valueNames.push_back("Spectral Difference");
|
c@27
|
117 desc.valueNames.push_back("Phase Deviation");
|
c@27
|
118 desc.valueNames.push_back("Complex Domain");
|
c@27
|
119 desc.valueNames.push_back("Broadband Energy Rise");
|
c@27
|
120 list.push_back(desc);
|
c@27
|
121
|
c@27
|
122 desc.identifier = "sensitivity";
|
c@27
|
123 desc.name = "Onset Detector Sensitivity";
|
c@27
|
124 desc.description = "Sensitivity of peak-picker for onset detection";
|
c@27
|
125 desc.minValue = 0;
|
c@27
|
126 desc.maxValue = 100;
|
c@27
|
127 desc.defaultValue = 50;
|
c@27
|
128 desc.isQuantized = true;
|
c@27
|
129 desc.quantizeStep = 1;
|
c@27
|
130 desc.unit = "%";
|
c@27
|
131 desc.valueNames.clear();
|
c@27
|
132 list.push_back(desc);
|
c@27
|
133
|
c@30
|
134 desc.identifier = "whiten";
|
c@30
|
135 desc.name = "Adaptive Whitening";
|
c@30
|
136 desc.description = "Normalize frequency bin magnitudes relative to recent peak levels";
|
c@30
|
137 desc.minValue = 0;
|
c@30
|
138 desc.maxValue = 1;
|
c@30
|
139 desc.defaultValue = 0;
|
c@30
|
140 desc.isQuantized = true;
|
c@30
|
141 desc.quantizeStep = 1;
|
c@30
|
142 desc.unit = "";
|
c@30
|
143 list.push_back(desc);
|
c@30
|
144
|
c@27
|
145 return list;
|
c@27
|
146 }
|
c@27
|
147
|
c@27
|
148 float
|
c@27
|
149 OnsetDetector::getParameter(std::string name) const
|
c@27
|
150 {
|
c@27
|
151 if (name == "dftype") {
|
c@27
|
152 switch (m_dfType) {
|
c@27
|
153 case DF_HFC: return 0;
|
c@27
|
154 case DF_SPECDIFF: return 1;
|
c@27
|
155 case DF_PHASEDEV: return 2;
|
c@27
|
156 default: case DF_COMPLEXSD: return 3;
|
c@27
|
157 case DF_BROADBAND: return 4;
|
c@27
|
158 }
|
c@27
|
159 } else if (name == "sensitivity") {
|
c@27
|
160 return m_sensitivity;
|
c@30
|
161 } else if (name == "whiten") {
|
c@30
|
162 return m_whiten ? 1.0 : 0.0;
|
c@27
|
163 }
|
c@27
|
164 return 0.0;
|
c@27
|
165 }
|
c@27
|
166
|
c@27
|
167 void
|
c@27
|
168 OnsetDetector::setParameter(std::string name, float value)
|
c@27
|
169 {
|
c@27
|
170 if (name == "dftype") {
|
c@30
|
171 int dfType = m_dfType;
|
c@27
|
172 switch (lrintf(value)) {
|
c@30
|
173 case 0: dfType = DF_HFC; break;
|
c@30
|
174 case 1: dfType = DF_SPECDIFF; break;
|
c@30
|
175 case 2: dfType = DF_PHASEDEV; break;
|
c@30
|
176 default: case 3: dfType = DF_COMPLEXSD; break;
|
c@30
|
177 case 4: dfType = DF_BROADBAND; break;
|
c@27
|
178 }
|
c@30
|
179 if (dfType == m_dfType) return;
|
c@30
|
180 m_dfType = dfType;
|
c@30
|
181 m_program = "";
|
c@27
|
182 } else if (name == "sensitivity") {
|
c@30
|
183 if (m_sensitivity == value) return;
|
c@27
|
184 m_sensitivity = value;
|
c@30
|
185 m_program = "";
|
c@30
|
186 } else if (name == "whiten") {
|
c@30
|
187 if (m_whiten == (value > 0.5)) return;
|
c@30
|
188 m_whiten = (value > 0.5);
|
c@30
|
189 m_program = "";
|
c@27
|
190 }
|
c@27
|
191 }
|
c@27
|
192
|
c@29
|
193 OnsetDetector::ProgramList
|
c@29
|
194 OnsetDetector::getPrograms() const
|
c@29
|
195 {
|
c@29
|
196 ProgramList programs;
|
c@30
|
197 programs.push_back("");
|
c@29
|
198 programs.push_back("General purpose");
|
c@29
|
199 programs.push_back("Soft onsets");
|
c@29
|
200 programs.push_back("Percussive onsets");
|
c@29
|
201 return programs;
|
c@29
|
202 }
|
c@29
|
203
|
c@29
|
204 std::string
|
c@29
|
205 OnsetDetector::getCurrentProgram() const
|
c@29
|
206 {
|
c@30
|
207 if (m_program == "") return "";
|
c@29
|
208 else return m_program;
|
c@29
|
209 }
|
c@29
|
210
|
c@29
|
211 void
|
c@29
|
212 OnsetDetector::selectProgram(std::string program)
|
c@29
|
213 {
|
c@29
|
214 if (program == "General purpose") {
|
c@29
|
215 setParameter("dftype", 3); // complex
|
c@29
|
216 setParameter("sensitivity", 50);
|
c@30
|
217 setParameter("whiten", 0);
|
c@29
|
218 } else if (program == "Soft onsets") {
|
c@31
|
219 setParameter("dftype", 3); // complex
|
c@31
|
220 setParameter("sensitivity", 40);
|
c@31
|
221 setParameter("whiten", 1);
|
c@29
|
222 } else if (program == "Percussive onsets") {
|
c@29
|
223 setParameter("dftype", 4); // broadband energy rise
|
c@29
|
224 setParameter("sensitivity", 40);
|
c@30
|
225 setParameter("whiten", 0);
|
c@29
|
226 } else {
|
c@29
|
227 return;
|
c@29
|
228 }
|
c@29
|
229 m_program = program;
|
c@29
|
230 }
|
c@29
|
231
|
c@27
|
232 bool
|
c@27
|
233 OnsetDetector::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
c@27
|
234 {
|
c@27
|
235 if (m_d) {
|
c@27
|
236 delete m_d;
|
c@27
|
237 m_d = 0;
|
c@27
|
238 }
|
c@27
|
239
|
c@27
|
240 if (channels < getMinChannelCount() ||
|
c@27
|
241 channels > getMaxChannelCount()) {
|
c@27
|
242 std::cerr << "OnsetDetector::initialise: Unsupported channel count: "
|
c@27
|
243 << channels << std::endl;
|
c@27
|
244 return false;
|
c@27
|
245 }
|
c@27
|
246
|
c@28
|
247 if (stepSize != getPreferredStepSize()) {
|
c@32
|
248 std::cerr << "WARNING: OnsetDetector::initialise: Possibly sub-optimal step size for this sample rate: "
|
c@28
|
249 << stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
|
c@27
|
250 }
|
c@27
|
251
|
c@28
|
252 if (blockSize != getPreferredBlockSize()) {
|
c@32
|
253 std::cerr << "WARNING: OnsetDetector::initialise: Possibly sub-optimal block size for this sample rate: "
|
c@28
|
254 << blockSize << " (wanted " << (getPreferredBlockSize()) << ")" << std::endl;
|
c@27
|
255 }
|
c@27
|
256
|
c@27
|
257 DFConfig dfConfig;
|
c@27
|
258 dfConfig.DFType = m_dfType;
|
c@27
|
259 dfConfig.stepSize = stepSize;
|
c@27
|
260 dfConfig.frameLength = blockSize;
|
c@27
|
261 dfConfig.dbRise = 6.0 - m_sensitivity / 16.6667;
|
c@30
|
262 dfConfig.adaptiveWhitening = m_whiten;
|
c@30
|
263 dfConfig.whiteningRelaxCoeff = -1;
|
c@30
|
264 dfConfig.whiteningFloor = -1;
|
c@27
|
265
|
c@27
|
266 m_d = new OnsetDetectorData(dfConfig);
|
c@27
|
267 return true;
|
c@27
|
268 }
|
c@27
|
269
|
c@27
|
270 void
|
c@27
|
271 OnsetDetector::reset()
|
c@27
|
272 {
|
c@27
|
273 if (m_d) m_d->reset();
|
c@27
|
274 }
|
c@27
|
275
|
c@27
|
276 size_t
|
c@27
|
277 OnsetDetector::getPreferredStepSize() const
|
c@27
|
278 {
|
c@32
|
279 size_t step = size_t(m_inputSampleRate * m_preferredStepSecs + 0.0001);
|
c@95
|
280 if (step < 1) step = 1;
|
c@27
|
281 // std::cerr << "OnsetDetector::getPreferredStepSize: input sample rate is " << m_inputSampleRate << ", step size is " << step << std::endl;
|
c@27
|
282 return step;
|
c@27
|
283 }
|
c@27
|
284
|
c@27
|
285 size_t
|
c@27
|
286 OnsetDetector::getPreferredBlockSize() const
|
c@27
|
287 {
|
c@27
|
288 return getPreferredStepSize() * 2;
|
c@27
|
289 }
|
c@27
|
290
|
c@27
|
291 OnsetDetector::OutputList
|
c@27
|
292 OnsetDetector::getOutputDescriptors() const
|
c@27
|
293 {
|
c@27
|
294 OutputList list;
|
c@27
|
295
|
c@32
|
296 float stepSecs = m_preferredStepSecs;
|
c@88
|
297 // if (m_d) stepSecs = m_d->dfConfig.stepSecs;
|
c@32
|
298
|
c@27
|
299 OutputDescriptor onsets;
|
c@27
|
300 onsets.identifier = "onsets";
|
c@27
|
301 onsets.name = "Note Onsets";
|
c@27
|
302 onsets.description = "Perceived note onset positions";
|
c@27
|
303 onsets.unit = "";
|
c@27
|
304 onsets.hasFixedBinCount = true;
|
c@27
|
305 onsets.binCount = 0;
|
c@27
|
306 onsets.sampleType = OutputDescriptor::VariableSampleRate;
|
c@32
|
307 onsets.sampleRate = 1.0 / stepSecs;
|
c@27
|
308
|
c@27
|
309 OutputDescriptor df;
|
c@27
|
310 df.identifier = "detection_fn";
|
c@27
|
311 df.name = "Onset Detection Function";
|
c@27
|
312 df.description = "Probability function of note onset likelihood";
|
c@27
|
313 df.unit = "";
|
c@27
|
314 df.hasFixedBinCount = true;
|
c@27
|
315 df.binCount = 1;
|
c@27
|
316 df.hasKnownExtents = false;
|
c@27
|
317 df.isQuantized = false;
|
c@27
|
318 df.sampleType = OutputDescriptor::OneSamplePerStep;
|
c@27
|
319
|
c@27
|
320 OutputDescriptor sdf;
|
c@27
|
321 sdf.identifier = "smoothed_df";
|
c@27
|
322 sdf.name = "Smoothed Detection Function";
|
c@27
|
323 sdf.description = "Smoothed probability function used for peak-picking";
|
c@27
|
324 sdf.unit = "";
|
c@27
|
325 sdf.hasFixedBinCount = true;
|
c@27
|
326 sdf.binCount = 1;
|
c@27
|
327 sdf.hasKnownExtents = false;
|
c@27
|
328 sdf.isQuantized = false;
|
c@27
|
329
|
c@27
|
330 sdf.sampleType = OutputDescriptor::VariableSampleRate;
|
c@27
|
331
|
c@27
|
332 //!!! SV doesn't seem to handle these correctly in getRemainingFeatures
|
c@27
|
333 // sdf.sampleType = OutputDescriptor::FixedSampleRate;
|
c@32
|
334 sdf.sampleRate = 1.0 / stepSecs;
|
c@27
|
335
|
c@27
|
336 list.push_back(onsets);
|
c@27
|
337 list.push_back(df);
|
c@27
|
338 list.push_back(sdf);
|
c@27
|
339
|
c@27
|
340 return list;
|
c@27
|
341 }
|
c@27
|
342
|
c@27
|
343 OnsetDetector::FeatureSet
|
c@27
|
344 OnsetDetector::process(const float *const *inputBuffers,
|
c@29
|
345 Vamp::RealTime timestamp)
|
c@27
|
346 {
|
c@27
|
347 if (!m_d) {
|
c@27
|
348 cerr << "ERROR: OnsetDetector::process: "
|
c@27
|
349 << "OnsetDetector has not been initialised"
|
c@27
|
350 << endl;
|
c@27
|
351 return FeatureSet();
|
c@27
|
352 }
|
c@27
|
353
|
c@153
|
354 size_t len = m_d->dfConfig.frameLength / 2 + 1;
|
c@27
|
355
|
c@29
|
356 // float mean = 0.f;
|
c@29
|
357 // for (size_t i = 0; i < len; ++i) {
|
c@29
|
358 //// std::cerr << inputBuffers[0][i] << " ";
|
c@29
|
359 // mean += inputBuffers[0][i];
|
c@29
|
360 // }
|
c@29
|
361 //// std::cerr << std::endl;
|
c@29
|
362 // mean /= len;
|
c@29
|
363
|
c@29
|
364 // std::cerr << "OnsetDetector::process(" << timestamp << "): "
|
c@29
|
365 // << "dftype " << m_dfType << ", sens " << m_sensitivity
|
c@29
|
366 // << ", len " << len << ", mean " << mean << std::endl;
|
c@29
|
367
|
c@153
|
368 double *reals = new double[len];
|
c@153
|
369 double *imags = new double[len];
|
c@27
|
370
|
c@27
|
371 // We only support a single input channel
|
c@27
|
372
|
c@27
|
373 for (size_t i = 0; i < len; ++i) {
|
c@153
|
374 reals[i] = inputBuffers[0][i*2];
|
c@153
|
375 imags[i] = inputBuffers[0][i*2+1];
|
c@27
|
376 }
|
c@27
|
377
|
c@153
|
378 double output = m_d->df->processFrequencyDomain(reals, imags);
|
c@27
|
379
|
c@153
|
380 delete[] reals;
|
c@153
|
381 delete[] imags;
|
c@27
|
382
|
c@85
|
383 if (m_d->dfOutput.empty()) m_d->origin = timestamp;
|
c@85
|
384
|
c@27
|
385 m_d->dfOutput.push_back(output);
|
c@27
|
386
|
c@27
|
387 FeatureSet returnFeatures;
|
c@27
|
388
|
c@27
|
389 Feature feature;
|
c@27
|
390 feature.hasTimestamp = false;
|
c@27
|
391 feature.values.push_back(output);
|
c@27
|
392
|
c@29
|
393 // std::cerr << "df: " << output << std::endl;
|
c@29
|
394
|
c@27
|
395 returnFeatures[1].push_back(feature); // detection function is output 1
|
c@27
|
396 return returnFeatures;
|
c@27
|
397 }
|
c@27
|
398
|
c@27
|
399 OnsetDetector::FeatureSet
|
c@27
|
400 OnsetDetector::getRemainingFeatures()
|
c@27
|
401 {
|
c@27
|
402 if (!m_d) {
|
c@27
|
403 cerr << "ERROR: OnsetDetector::getRemainingFeatures: "
|
c@27
|
404 << "OnsetDetector has not been initialised"
|
c@27
|
405 << endl;
|
c@27
|
406 return FeatureSet();
|
c@27
|
407 }
|
c@27
|
408
|
c@27
|
409 if (m_dfType == DF_BROADBAND) {
|
c@27
|
410 for (size_t i = 0; i < m_d->dfOutput.size(); ++i) {
|
c@27
|
411 if (m_d->dfOutput[i] < ((110 - m_sensitivity) *
|
c@27
|
412 m_d->dfConfig.frameLength) / 200) {
|
c@27
|
413 m_d->dfOutput[i] = 0;
|
c@27
|
414 }
|
c@27
|
415 }
|
c@27
|
416 }
|
c@27
|
417
|
c@27
|
418 double aCoeffs[] = { 1.0000, -0.5949, 0.2348 };
|
c@27
|
419 double bCoeffs[] = { 0.1600, 0.3200, 0.1600 };
|
c@27
|
420
|
c@27
|
421 FeatureSet returnFeatures;
|
c@27
|
422
|
c@27
|
423 PPickParams ppParams;
|
c@27
|
424 ppParams.length = m_d->dfOutput.size();
|
c@27
|
425 // tau and cutoff appear to be unused in PeakPicking, but I've
|
c@27
|
426 // inserted some moderately plausible values rather than leave
|
c@27
|
427 // them unset. The QuadThresh values come from trial and error.
|
c@27
|
428 // The rest of these are copied from ttParams in the BeatTracker
|
c@27
|
429 // code: I don't claim to know whether they're good or not --cc
|
c@27
|
430 ppParams.tau = m_d->dfConfig.stepSize / m_inputSampleRate;
|
c@27
|
431 ppParams.alpha = 9;
|
c@27
|
432 ppParams.cutoff = m_inputSampleRate/4;
|
c@27
|
433 ppParams.LPOrd = 2;
|
c@27
|
434 ppParams.LPACoeffs = aCoeffs;
|
c@27
|
435 ppParams.LPBCoeffs = bCoeffs;
|
c@27
|
436 ppParams.WinT.post = 8;
|
c@27
|
437 ppParams.WinT.pre = 7;
|
c@27
|
438 ppParams.QuadThresh.a = (100 - m_sensitivity) / 1000.0;
|
c@27
|
439 ppParams.QuadThresh.b = 0;
|
c@27
|
440 ppParams.QuadThresh.c = (100 - m_sensitivity) / 1500.0;
|
c@27
|
441
|
c@27
|
442 PeakPicking peakPicker(ppParams);
|
c@27
|
443
|
c@27
|
444 double *ppSrc = new double[ppParams.length];
|
cannam@239
|
445 for (int i = 0; i < ppParams.length; ++i) {
|
c@27
|
446 ppSrc[i] = m_d->dfOutput[i];
|
c@27
|
447 }
|
c@27
|
448
|
c@27
|
449 vector<int> onsets;
|
c@27
|
450 peakPicker.process(ppSrc, ppParams.length, onsets);
|
c@27
|
451
|
c@27
|
452 for (size_t i = 0; i < onsets.size(); ++i) {
|
c@27
|
453
|
c@27
|
454 size_t index = onsets[i];
|
c@27
|
455
|
c@27
|
456 if (m_dfType != DF_BROADBAND) {
|
c@27
|
457 double prevDiff = 0.0;
|
c@27
|
458 while (index > 1) {
|
c@27
|
459 double diff = ppSrc[index] - ppSrc[index-1];
|
c@27
|
460 if (diff < prevDiff * 0.9) break;
|
c@27
|
461 prevDiff = diff;
|
c@27
|
462 --index;
|
c@27
|
463 }
|
c@27
|
464 }
|
c@27
|
465
|
c@27
|
466 size_t frame = index * m_d->dfConfig.stepSize;
|
c@27
|
467
|
c@27
|
468 Feature feature;
|
c@27
|
469 feature.hasTimestamp = true;
|
c@85
|
470 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
|
c@27
|
471 (frame, lrintf(m_inputSampleRate));
|
c@27
|
472
|
c@27
|
473 returnFeatures[0].push_back(feature); // onsets are output 0
|
c@27
|
474 }
|
c@27
|
475
|
cannam@239
|
476 for (int i = 0; i < ppParams.length; ++i) {
|
c@27
|
477
|
c@27
|
478 Feature feature;
|
cannam@239
|
479
|
c@27
|
480 feature.hasTimestamp = true;
|
c@27
|
481 size_t frame = i * m_d->dfConfig.stepSize;
|
c@85
|
482 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
|
c@27
|
483 (frame, lrintf(m_inputSampleRate));
|
c@27
|
484
|
c@27
|
485 feature.values.push_back(ppSrc[i]);
|
c@27
|
486 returnFeatures[2].push_back(feature); // smoothed df is output 2
|
c@27
|
487 }
|
c@27
|
488
|
c@27
|
489 return returnFeatures;
|
c@27
|
490 }
|
c@27
|
491
|