c@27
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@27
|
2
|
c@27
|
3 /*
|
c@27
|
4 QM Vamp Plugin Set
|
c@27
|
5
|
c@27
|
6 Centre for Digital Music, Queen Mary, University of London.
|
c@27
|
7 All rights reserved.
|
c@27
|
8 */
|
c@27
|
9
|
c@27
|
10 #include "OnsetDetect.h"
|
c@27
|
11
|
c@27
|
12 #include <dsp/onsets/DetectionFunction.h>
|
c@27
|
13 #include <dsp/onsets/PeakPicking.h>
|
c@27
|
14 #include <dsp/tempotracking/TempoTrack.h>
|
c@27
|
15
|
c@27
|
16 using std::string;
|
c@27
|
17 using std::vector;
|
c@27
|
18 using std::cerr;
|
c@27
|
19 using std::endl;
|
c@27
|
20
|
c@32
|
21 float OnsetDetector::m_preferredStepSecs = 0.01161;
|
c@27
|
22
|
c@27
|
23 class OnsetDetectorData
|
c@27
|
24 {
|
c@27
|
25 public:
|
c@27
|
26 OnsetDetectorData(const DFConfig &config) : dfConfig(config) {
|
c@27
|
27 df = new DetectionFunction(config);
|
c@27
|
28 }
|
c@27
|
29 ~OnsetDetectorData() {
|
c@27
|
30 delete df;
|
c@27
|
31 }
|
c@27
|
32 void reset() {
|
c@27
|
33 delete df;
|
c@27
|
34 df = new DetectionFunction(dfConfig);
|
c@27
|
35 dfOutput.clear();
|
c@85
|
36 origin = Vamp::RealTime::zeroTime;
|
c@27
|
37 }
|
c@27
|
38
|
c@27
|
39 DFConfig dfConfig;
|
c@27
|
40 DetectionFunction *df;
|
c@27
|
41 vector<double> dfOutput;
|
c@85
|
42 Vamp::RealTime origin;
|
c@27
|
43 };
|
c@27
|
44
|
c@27
|
45
|
c@27
|
46 OnsetDetector::OnsetDetector(float inputSampleRate) :
|
c@27
|
47 Vamp::Plugin(inputSampleRate),
|
c@27
|
48 m_d(0),
|
c@27
|
49 m_dfType(DF_COMPLEXSD),
|
c@30
|
50 m_sensitivity(50),
|
c@30
|
51 m_whiten(false)
|
c@27
|
52 {
|
c@27
|
53 }
|
c@27
|
54
|
c@27
|
55 OnsetDetector::~OnsetDetector()
|
c@27
|
56 {
|
c@27
|
57 delete m_d;
|
c@27
|
58 }
|
c@27
|
59
|
c@27
|
60 string
|
c@27
|
61 OnsetDetector::getIdentifier() const
|
c@27
|
62 {
|
c@27
|
63 return "qm-onsetdetector";
|
c@27
|
64 }
|
c@27
|
65
|
c@27
|
66 string
|
c@27
|
67 OnsetDetector::getName() const
|
c@27
|
68 {
|
c@27
|
69 return "Note Onset Detector";
|
c@27
|
70 }
|
c@27
|
71
|
c@27
|
72 string
|
c@27
|
73 OnsetDetector::getDescription() const
|
c@27
|
74 {
|
c@27
|
75 return "Estimate individual note onset positions";
|
c@27
|
76 }
|
c@27
|
77
|
c@27
|
78 string
|
c@27
|
79 OnsetDetector::getMaker() const
|
c@27
|
80 {
|
c@50
|
81 return "Queen Mary, University of London";
|
c@27
|
82 }
|
c@27
|
83
|
c@27
|
84 int
|
c@27
|
85 OnsetDetector::getPluginVersion() const
|
c@27
|
86 {
|
c@35
|
87 return 2;
|
c@27
|
88 }
|
c@27
|
89
|
c@27
|
90 string
|
c@27
|
91 OnsetDetector::getCopyright() const
|
c@27
|
92 {
|
c@50
|
93 return "Plugin by Christian Landone, Chris Duxbury and Juan Pablo Bello. Copyright (c) 2006-2008 QMUL - All Rights Reserved";
|
c@27
|
94 }
|
c@27
|
95
|
c@27
|
96 OnsetDetector::ParameterList
|
c@27
|
97 OnsetDetector::getParameterDescriptors() const
|
c@27
|
98 {
|
c@27
|
99 ParameterList list;
|
c@27
|
100
|
c@27
|
101 ParameterDescriptor desc;
|
c@27
|
102 desc.identifier = "dftype";
|
c@27
|
103 desc.name = "Onset Detection Function Type";
|
c@27
|
104 desc.description = "Method used to calculate the onset detection function";
|
c@27
|
105 desc.minValue = 0;
|
c@31
|
106 desc.maxValue = 4;
|
c@27
|
107 desc.defaultValue = 3;
|
c@27
|
108 desc.isQuantized = true;
|
c@27
|
109 desc.quantizeStep = 1;
|
c@27
|
110 desc.valueNames.push_back("High-Frequency Content");
|
c@27
|
111 desc.valueNames.push_back("Spectral Difference");
|
c@27
|
112 desc.valueNames.push_back("Phase Deviation");
|
c@27
|
113 desc.valueNames.push_back("Complex Domain");
|
c@27
|
114 desc.valueNames.push_back("Broadband Energy Rise");
|
c@27
|
115 list.push_back(desc);
|
c@27
|
116
|
c@27
|
117 desc.identifier = "sensitivity";
|
c@27
|
118 desc.name = "Onset Detector Sensitivity";
|
c@27
|
119 desc.description = "Sensitivity of peak-picker for onset detection";
|
c@27
|
120 desc.minValue = 0;
|
c@27
|
121 desc.maxValue = 100;
|
c@27
|
122 desc.defaultValue = 50;
|
c@27
|
123 desc.isQuantized = true;
|
c@27
|
124 desc.quantizeStep = 1;
|
c@27
|
125 desc.unit = "%";
|
c@27
|
126 desc.valueNames.clear();
|
c@27
|
127 list.push_back(desc);
|
c@27
|
128
|
c@30
|
129 desc.identifier = "whiten";
|
c@30
|
130 desc.name = "Adaptive Whitening";
|
c@30
|
131 desc.description = "Normalize frequency bin magnitudes relative to recent peak levels";
|
c@30
|
132 desc.minValue = 0;
|
c@30
|
133 desc.maxValue = 1;
|
c@30
|
134 desc.defaultValue = 0;
|
c@30
|
135 desc.isQuantized = true;
|
c@30
|
136 desc.quantizeStep = 1;
|
c@30
|
137 desc.unit = "";
|
c@30
|
138 list.push_back(desc);
|
c@30
|
139
|
c@27
|
140 return list;
|
c@27
|
141 }
|
c@27
|
142
|
c@27
|
143 float
|
c@27
|
144 OnsetDetector::getParameter(std::string name) const
|
c@27
|
145 {
|
c@27
|
146 if (name == "dftype") {
|
c@27
|
147 switch (m_dfType) {
|
c@27
|
148 case DF_HFC: return 0;
|
c@27
|
149 case DF_SPECDIFF: return 1;
|
c@27
|
150 case DF_PHASEDEV: return 2;
|
c@27
|
151 default: case DF_COMPLEXSD: return 3;
|
c@27
|
152 case DF_BROADBAND: return 4;
|
c@27
|
153 }
|
c@27
|
154 } else if (name == "sensitivity") {
|
c@27
|
155 return m_sensitivity;
|
c@30
|
156 } else if (name == "whiten") {
|
c@30
|
157 return m_whiten ? 1.0 : 0.0;
|
c@27
|
158 }
|
c@27
|
159 return 0.0;
|
c@27
|
160 }
|
c@27
|
161
|
c@27
|
162 void
|
c@27
|
163 OnsetDetector::setParameter(std::string name, float value)
|
c@27
|
164 {
|
c@27
|
165 if (name == "dftype") {
|
c@30
|
166 int dfType = m_dfType;
|
c@27
|
167 switch (lrintf(value)) {
|
c@30
|
168 case 0: dfType = DF_HFC; break;
|
c@30
|
169 case 1: dfType = DF_SPECDIFF; break;
|
c@30
|
170 case 2: dfType = DF_PHASEDEV; break;
|
c@30
|
171 default: case 3: dfType = DF_COMPLEXSD; break;
|
c@30
|
172 case 4: dfType = DF_BROADBAND; break;
|
c@27
|
173 }
|
c@30
|
174 if (dfType == m_dfType) return;
|
c@30
|
175 m_dfType = dfType;
|
c@30
|
176 m_program = "";
|
c@27
|
177 } else if (name == "sensitivity") {
|
c@30
|
178 if (m_sensitivity == value) return;
|
c@27
|
179 m_sensitivity = value;
|
c@30
|
180 m_program = "";
|
c@30
|
181 } else if (name == "whiten") {
|
c@30
|
182 if (m_whiten == (value > 0.5)) return;
|
c@30
|
183 m_whiten = (value > 0.5);
|
c@30
|
184 m_program = "";
|
c@27
|
185 }
|
c@27
|
186 }
|
c@27
|
187
|
c@29
|
188 OnsetDetector::ProgramList
|
c@29
|
189 OnsetDetector::getPrograms() const
|
c@29
|
190 {
|
c@29
|
191 ProgramList programs;
|
c@30
|
192 programs.push_back("");
|
c@29
|
193 programs.push_back("General purpose");
|
c@29
|
194 programs.push_back("Soft onsets");
|
c@29
|
195 programs.push_back("Percussive onsets");
|
c@29
|
196 return programs;
|
c@29
|
197 }
|
c@29
|
198
|
c@29
|
199 std::string
|
c@29
|
200 OnsetDetector::getCurrentProgram() const
|
c@29
|
201 {
|
c@30
|
202 if (m_program == "") return "";
|
c@29
|
203 else return m_program;
|
c@29
|
204 }
|
c@29
|
205
|
c@29
|
206 void
|
c@29
|
207 OnsetDetector::selectProgram(std::string program)
|
c@29
|
208 {
|
c@29
|
209 if (program == "General purpose") {
|
c@29
|
210 setParameter("dftype", 3); // complex
|
c@29
|
211 setParameter("sensitivity", 50);
|
c@30
|
212 setParameter("whiten", 0);
|
c@29
|
213 } else if (program == "Soft onsets") {
|
c@31
|
214 setParameter("dftype", 3); // complex
|
c@31
|
215 setParameter("sensitivity", 40);
|
c@31
|
216 setParameter("whiten", 1);
|
c@29
|
217 } else if (program == "Percussive onsets") {
|
c@29
|
218 setParameter("dftype", 4); // broadband energy rise
|
c@29
|
219 setParameter("sensitivity", 40);
|
c@30
|
220 setParameter("whiten", 0);
|
c@29
|
221 } else {
|
c@29
|
222 return;
|
c@29
|
223 }
|
c@29
|
224 m_program = program;
|
c@29
|
225 }
|
c@29
|
226
|
c@27
|
227 bool
|
c@27
|
228 OnsetDetector::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
c@27
|
229 {
|
c@27
|
230 if (m_d) {
|
c@27
|
231 delete m_d;
|
c@27
|
232 m_d = 0;
|
c@27
|
233 }
|
c@27
|
234
|
c@27
|
235 if (channels < getMinChannelCount() ||
|
c@27
|
236 channels > getMaxChannelCount()) {
|
c@27
|
237 std::cerr << "OnsetDetector::initialise: Unsupported channel count: "
|
c@27
|
238 << channels << std::endl;
|
c@27
|
239 return false;
|
c@27
|
240 }
|
c@27
|
241
|
c@28
|
242 if (stepSize != getPreferredStepSize()) {
|
c@32
|
243 std::cerr << "WARNING: OnsetDetector::initialise: Possibly sub-optimal step size for this sample rate: "
|
c@28
|
244 << stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
|
c@27
|
245 }
|
c@27
|
246
|
c@28
|
247 if (blockSize != getPreferredBlockSize()) {
|
c@32
|
248 std::cerr << "WARNING: OnsetDetector::initialise: Possibly sub-optimal block size for this sample rate: "
|
c@28
|
249 << blockSize << " (wanted " << (getPreferredBlockSize()) << ")" << std::endl;
|
c@27
|
250 }
|
c@27
|
251
|
c@27
|
252 DFConfig dfConfig;
|
c@27
|
253 dfConfig.DFType = m_dfType;
|
c@27
|
254 dfConfig.stepSize = stepSize;
|
c@27
|
255 dfConfig.frameLength = blockSize;
|
c@27
|
256 dfConfig.dbRise = 6.0 - m_sensitivity / 16.6667;
|
c@30
|
257 dfConfig.adaptiveWhitening = m_whiten;
|
c@30
|
258 dfConfig.whiteningRelaxCoeff = -1;
|
c@30
|
259 dfConfig.whiteningFloor = -1;
|
c@27
|
260
|
c@27
|
261 m_d = new OnsetDetectorData(dfConfig);
|
c@27
|
262 return true;
|
c@27
|
263 }
|
c@27
|
264
|
c@27
|
265 void
|
c@27
|
266 OnsetDetector::reset()
|
c@27
|
267 {
|
c@27
|
268 if (m_d) m_d->reset();
|
c@27
|
269 }
|
c@27
|
270
|
c@27
|
271 size_t
|
c@27
|
272 OnsetDetector::getPreferredStepSize() const
|
c@27
|
273 {
|
c@32
|
274 size_t step = size_t(m_inputSampleRate * m_preferredStepSecs + 0.0001);
|
c@27
|
275 // std::cerr << "OnsetDetector::getPreferredStepSize: input sample rate is " << m_inputSampleRate << ", step size is " << step << std::endl;
|
c@27
|
276 return step;
|
c@27
|
277 }
|
c@27
|
278
|
c@27
|
279 size_t
|
c@27
|
280 OnsetDetector::getPreferredBlockSize() const
|
c@27
|
281 {
|
c@27
|
282 return getPreferredStepSize() * 2;
|
c@27
|
283 }
|
c@27
|
284
|
c@27
|
285 OnsetDetector::OutputList
|
c@27
|
286 OnsetDetector::getOutputDescriptors() const
|
c@27
|
287 {
|
c@27
|
288 OutputList list;
|
c@27
|
289
|
c@32
|
290 float stepSecs = m_preferredStepSecs;
|
c@88
|
291 // if (m_d) stepSecs = m_d->dfConfig.stepSecs;
|
c@32
|
292
|
c@27
|
293 OutputDescriptor onsets;
|
c@27
|
294 onsets.identifier = "onsets";
|
c@27
|
295 onsets.name = "Note Onsets";
|
c@27
|
296 onsets.description = "Perceived note onset positions";
|
c@27
|
297 onsets.unit = "";
|
c@27
|
298 onsets.hasFixedBinCount = true;
|
c@27
|
299 onsets.binCount = 0;
|
c@27
|
300 onsets.sampleType = OutputDescriptor::VariableSampleRate;
|
c@32
|
301 onsets.sampleRate = 1.0 / stepSecs;
|
c@27
|
302
|
c@27
|
303 OutputDescriptor df;
|
c@27
|
304 df.identifier = "detection_fn";
|
c@27
|
305 df.name = "Onset Detection Function";
|
c@27
|
306 df.description = "Probability function of note onset likelihood";
|
c@27
|
307 df.unit = "";
|
c@27
|
308 df.hasFixedBinCount = true;
|
c@27
|
309 df.binCount = 1;
|
c@27
|
310 df.hasKnownExtents = false;
|
c@27
|
311 df.isQuantized = false;
|
c@27
|
312 df.sampleType = OutputDescriptor::OneSamplePerStep;
|
c@27
|
313
|
c@27
|
314 OutputDescriptor sdf;
|
c@27
|
315 sdf.identifier = "smoothed_df";
|
c@27
|
316 sdf.name = "Smoothed Detection Function";
|
c@27
|
317 sdf.description = "Smoothed probability function used for peak-picking";
|
c@27
|
318 sdf.unit = "";
|
c@27
|
319 sdf.hasFixedBinCount = true;
|
c@27
|
320 sdf.binCount = 1;
|
c@27
|
321 sdf.hasKnownExtents = false;
|
c@27
|
322 sdf.isQuantized = false;
|
c@27
|
323
|
c@27
|
324 sdf.sampleType = OutputDescriptor::VariableSampleRate;
|
c@27
|
325
|
c@27
|
326 //!!! SV doesn't seem to handle these correctly in getRemainingFeatures
|
c@27
|
327 // sdf.sampleType = OutputDescriptor::FixedSampleRate;
|
c@32
|
328 sdf.sampleRate = 1.0 / stepSecs;
|
c@27
|
329
|
c@27
|
330 list.push_back(onsets);
|
c@27
|
331 list.push_back(df);
|
c@27
|
332 list.push_back(sdf);
|
c@27
|
333
|
c@27
|
334 return list;
|
c@27
|
335 }
|
c@27
|
336
|
c@27
|
337 OnsetDetector::FeatureSet
|
c@27
|
338 OnsetDetector::process(const float *const *inputBuffers,
|
c@29
|
339 Vamp::RealTime timestamp)
|
c@27
|
340 {
|
c@27
|
341 if (!m_d) {
|
c@27
|
342 cerr << "ERROR: OnsetDetector::process: "
|
c@27
|
343 << "OnsetDetector has not been initialised"
|
c@27
|
344 << endl;
|
c@27
|
345 return FeatureSet();
|
c@27
|
346 }
|
c@27
|
347
|
c@27
|
348 size_t len = m_d->dfConfig.frameLength / 2;
|
c@27
|
349
|
c@29
|
350 // float mean = 0.f;
|
c@29
|
351 // for (size_t i = 0; i < len; ++i) {
|
c@29
|
352 //// std::cerr << inputBuffers[0][i] << " ";
|
c@29
|
353 // mean += inputBuffers[0][i];
|
c@29
|
354 // }
|
c@29
|
355 //// std::cerr << std::endl;
|
c@29
|
356 // mean /= len;
|
c@29
|
357
|
c@29
|
358 // std::cerr << "OnsetDetector::process(" << timestamp << "): "
|
c@29
|
359 // << "dftype " << m_dfType << ", sens " << m_sensitivity
|
c@29
|
360 // << ", len " << len << ", mean " << mean << std::endl;
|
c@29
|
361
|
c@27
|
362 double *magnitudes = new double[len];
|
c@27
|
363 double *phases = new double[len];
|
c@27
|
364
|
c@27
|
365 // We only support a single input channel
|
c@27
|
366
|
c@27
|
367 for (size_t i = 0; i < len; ++i) {
|
c@27
|
368
|
c@27
|
369 magnitudes[i] = sqrt(inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] +
|
c@27
|
370 inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]);
|
c@27
|
371
|
c@27
|
372 phases[i] = atan2(-inputBuffers[0][i*2+1], inputBuffers[0][i*2]);
|
c@27
|
373 }
|
c@27
|
374
|
c@27
|
375 double output = m_d->df->process(magnitudes, phases);
|
c@27
|
376
|
c@27
|
377 delete[] magnitudes;
|
c@27
|
378 delete[] phases;
|
c@27
|
379
|
c@85
|
380 if (m_d->dfOutput.empty()) m_d->origin = timestamp;
|
c@85
|
381
|
c@27
|
382 m_d->dfOutput.push_back(output);
|
c@27
|
383
|
c@27
|
384 FeatureSet returnFeatures;
|
c@27
|
385
|
c@27
|
386 Feature feature;
|
c@27
|
387 feature.hasTimestamp = false;
|
c@27
|
388 feature.values.push_back(output);
|
c@27
|
389
|
c@29
|
390 // std::cerr << "df: " << output << std::endl;
|
c@29
|
391
|
c@27
|
392 returnFeatures[1].push_back(feature); // detection function is output 1
|
c@27
|
393 return returnFeatures;
|
c@27
|
394 }
|
c@27
|
395
|
c@27
|
396 OnsetDetector::FeatureSet
|
c@27
|
397 OnsetDetector::getRemainingFeatures()
|
c@27
|
398 {
|
c@27
|
399 if (!m_d) {
|
c@27
|
400 cerr << "ERROR: OnsetDetector::getRemainingFeatures: "
|
c@27
|
401 << "OnsetDetector has not been initialised"
|
c@27
|
402 << endl;
|
c@27
|
403 return FeatureSet();
|
c@27
|
404 }
|
c@27
|
405
|
c@27
|
406 if (m_dfType == DF_BROADBAND) {
|
c@27
|
407 for (size_t i = 0; i < m_d->dfOutput.size(); ++i) {
|
c@27
|
408 if (m_d->dfOutput[i] < ((110 - m_sensitivity) *
|
c@27
|
409 m_d->dfConfig.frameLength) / 200) {
|
c@27
|
410 m_d->dfOutput[i] = 0;
|
c@27
|
411 }
|
c@27
|
412 }
|
c@27
|
413 }
|
c@27
|
414
|
c@27
|
415 double aCoeffs[] = { 1.0000, -0.5949, 0.2348 };
|
c@27
|
416 double bCoeffs[] = { 0.1600, 0.3200, 0.1600 };
|
c@27
|
417
|
c@27
|
418 FeatureSet returnFeatures;
|
c@27
|
419
|
c@27
|
420 PPickParams ppParams;
|
c@27
|
421 ppParams.length = m_d->dfOutput.size();
|
c@27
|
422 // tau and cutoff appear to be unused in PeakPicking, but I've
|
c@27
|
423 // inserted some moderately plausible values rather than leave
|
c@27
|
424 // them unset. The QuadThresh values come from trial and error.
|
c@27
|
425 // The rest of these are copied from ttParams in the BeatTracker
|
c@27
|
426 // code: I don't claim to know whether they're good or not --cc
|
c@27
|
427 ppParams.tau = m_d->dfConfig.stepSize / m_inputSampleRate;
|
c@27
|
428 ppParams.alpha = 9;
|
c@27
|
429 ppParams.cutoff = m_inputSampleRate/4;
|
c@27
|
430 ppParams.LPOrd = 2;
|
c@27
|
431 ppParams.LPACoeffs = aCoeffs;
|
c@27
|
432 ppParams.LPBCoeffs = bCoeffs;
|
c@27
|
433 ppParams.WinT.post = 8;
|
c@27
|
434 ppParams.WinT.pre = 7;
|
c@27
|
435 ppParams.QuadThresh.a = (100 - m_sensitivity) / 1000.0;
|
c@27
|
436 ppParams.QuadThresh.b = 0;
|
c@27
|
437 ppParams.QuadThresh.c = (100 - m_sensitivity) / 1500.0;
|
c@27
|
438
|
c@27
|
439 PeakPicking peakPicker(ppParams);
|
c@27
|
440
|
c@27
|
441 double *ppSrc = new double[ppParams.length];
|
c@27
|
442 for (unsigned int i = 0; i < ppParams.length; ++i) {
|
c@27
|
443 ppSrc[i] = m_d->dfOutput[i];
|
c@27
|
444 }
|
c@27
|
445
|
c@27
|
446 vector<int> onsets;
|
c@27
|
447 peakPicker.process(ppSrc, ppParams.length, onsets);
|
c@27
|
448
|
c@27
|
449 for (size_t i = 0; i < onsets.size(); ++i) {
|
c@27
|
450
|
c@27
|
451 size_t index = onsets[i];
|
c@27
|
452
|
c@27
|
453 if (m_dfType != DF_BROADBAND) {
|
c@27
|
454 double prevDiff = 0.0;
|
c@27
|
455 while (index > 1) {
|
c@27
|
456 double diff = ppSrc[index] - ppSrc[index-1];
|
c@27
|
457 if (diff < prevDiff * 0.9) break;
|
c@27
|
458 prevDiff = diff;
|
c@27
|
459 --index;
|
c@27
|
460 }
|
c@27
|
461 }
|
c@27
|
462
|
c@27
|
463 size_t frame = index * m_d->dfConfig.stepSize;
|
c@27
|
464
|
c@27
|
465 Feature feature;
|
c@27
|
466 feature.hasTimestamp = true;
|
c@85
|
467 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
|
c@27
|
468 (frame, lrintf(m_inputSampleRate));
|
c@27
|
469
|
c@27
|
470 returnFeatures[0].push_back(feature); // onsets are output 0
|
c@27
|
471 }
|
c@27
|
472
|
c@30
|
473 for (unsigned int i = 0; i < ppParams.length; ++i) {
|
c@27
|
474
|
c@27
|
475 Feature feature;
|
c@27
|
476 // feature.hasTimestamp = false;
|
c@27
|
477 feature.hasTimestamp = true;
|
c@27
|
478 size_t frame = i * m_d->dfConfig.stepSize;
|
c@85
|
479 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
|
c@27
|
480 (frame, lrintf(m_inputSampleRate));
|
c@27
|
481
|
c@27
|
482 feature.values.push_back(ppSrc[i]);
|
c@27
|
483 returnFeatures[2].push_back(feature); // smoothed df is output 2
|
c@27
|
484 }
|
c@27
|
485
|
c@27
|
486 return returnFeatures;
|
c@27
|
487 }
|
c@27
|
488
|