c@27
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@27
|
2
|
c@27
|
3 /*
|
c@27
|
4 QM Vamp Plugin Set
|
c@27
|
5
|
c@27
|
6 Centre for Digital Music, Queen Mary, University of London.
|
c@27
|
7 All rights reserved.
|
c@27
|
8 */
|
c@27
|
9
|
c@27
|
10 #include "OnsetDetect.h"
|
c@27
|
11
|
c@27
|
12 #include <dsp/onsets/DetectionFunction.h>
|
c@27
|
13 #include <dsp/onsets/PeakPicking.h>
|
c@27
|
14 #include <dsp/tempotracking/TempoTrack.h>
|
c@27
|
15
|
c@27
|
16 using std::string;
|
c@27
|
17 using std::vector;
|
c@27
|
18 using std::cerr;
|
c@27
|
19 using std::endl;
|
c@27
|
20
|
c@27
|
21 float OnsetDetector::m_stepSecs = 0.01161;
|
c@27
|
22
|
c@27
|
23 class OnsetDetectorData
|
c@27
|
24 {
|
c@27
|
25 public:
|
c@27
|
26 OnsetDetectorData(const DFConfig &config) : dfConfig(config) {
|
c@27
|
27 df = new DetectionFunction(config);
|
c@27
|
28 }
|
c@27
|
29 ~OnsetDetectorData() {
|
c@27
|
30 delete df;
|
c@27
|
31 }
|
c@27
|
32 void reset() {
|
c@27
|
33 delete df;
|
c@27
|
34 df = new DetectionFunction(dfConfig);
|
c@27
|
35 dfOutput.clear();
|
c@27
|
36 }
|
c@27
|
37
|
c@27
|
38 DFConfig dfConfig;
|
c@27
|
39 DetectionFunction *df;
|
c@27
|
40 vector<double> dfOutput;
|
c@27
|
41 };
|
c@27
|
42
|
c@27
|
43
|
c@27
|
44 OnsetDetector::OnsetDetector(float inputSampleRate) :
|
c@27
|
45 Vamp::Plugin(inputSampleRate),
|
c@27
|
46 m_d(0),
|
c@27
|
47 m_dfType(DF_COMPLEXSD),
|
c@27
|
48 m_sensitivity(50)
|
c@27
|
49 {
|
c@27
|
50 }
|
c@27
|
51
|
c@27
|
52 OnsetDetector::~OnsetDetector()
|
c@27
|
53 {
|
c@27
|
54 delete m_d;
|
c@27
|
55 }
|
c@27
|
56
|
c@27
|
57 string
|
c@27
|
58 OnsetDetector::getIdentifier() const
|
c@27
|
59 {
|
c@27
|
60 return "qm-onsetdetector";
|
c@27
|
61 }
|
c@27
|
62
|
c@27
|
63 string
|
c@27
|
64 OnsetDetector::getName() const
|
c@27
|
65 {
|
c@27
|
66 return "Note Onset Detector";
|
c@27
|
67 }
|
c@27
|
68
|
c@27
|
69 string
|
c@27
|
70 OnsetDetector::getDescription() const
|
c@27
|
71 {
|
c@27
|
72 return "Estimate individual note onset positions";
|
c@27
|
73 }
|
c@27
|
74
|
c@27
|
75 string
|
c@27
|
76 OnsetDetector::getMaker() const
|
c@27
|
77 {
|
c@27
|
78 return "Christian Landone, Chris Duxbury and Juan Pablo Bello, Queen Mary, University of London";
|
c@27
|
79 }
|
c@27
|
80
|
c@27
|
81 int
|
c@27
|
82 OnsetDetector::getPluginVersion() const
|
c@27
|
83 {
|
c@27
|
84 return 1;
|
c@27
|
85 }
|
c@27
|
86
|
c@27
|
87 string
|
c@27
|
88 OnsetDetector::getCopyright() const
|
c@27
|
89 {
|
c@27
|
90 return "Copyright (c) 2006-2007 - All Rights Reserved";
|
c@27
|
91 }
|
c@27
|
92
|
c@27
|
93 OnsetDetector::ParameterList
|
c@27
|
94 OnsetDetector::getParameterDescriptors() const
|
c@27
|
95 {
|
c@27
|
96 ParameterList list;
|
c@27
|
97
|
c@27
|
98 ParameterDescriptor desc;
|
c@27
|
99 desc.identifier = "dftype";
|
c@27
|
100 desc.name = "Onset Detection Function Type";
|
c@27
|
101 desc.description = "Method used to calculate the onset detection function";
|
c@27
|
102 desc.minValue = 0;
|
c@27
|
103 desc.maxValue = 3;
|
c@27
|
104 desc.defaultValue = 3;
|
c@27
|
105 desc.isQuantized = true;
|
c@27
|
106 desc.quantizeStep = 1;
|
c@27
|
107 desc.valueNames.push_back("High-Frequency Content");
|
c@27
|
108 desc.valueNames.push_back("Spectral Difference");
|
c@27
|
109 desc.valueNames.push_back("Phase Deviation");
|
c@27
|
110 desc.valueNames.push_back("Complex Domain");
|
c@27
|
111 desc.valueNames.push_back("Broadband Energy Rise");
|
c@27
|
112 list.push_back(desc);
|
c@27
|
113
|
c@27
|
114 desc.identifier = "sensitivity";
|
c@27
|
115 desc.name = "Onset Detector Sensitivity";
|
c@27
|
116 desc.description = "Sensitivity of peak-picker for onset detection";
|
c@27
|
117 desc.minValue = 0;
|
c@27
|
118 desc.maxValue = 100;
|
c@27
|
119 desc.defaultValue = 50;
|
c@27
|
120 desc.isQuantized = true;
|
c@27
|
121 desc.quantizeStep = 1;
|
c@27
|
122 desc.unit = "%";
|
c@27
|
123 desc.valueNames.clear();
|
c@27
|
124 list.push_back(desc);
|
c@27
|
125
|
c@27
|
126 return list;
|
c@27
|
127 }
|
c@27
|
128
|
c@27
|
129 float
|
c@27
|
130 OnsetDetector::getParameter(std::string name) const
|
c@27
|
131 {
|
c@27
|
132 if (name == "dftype") {
|
c@27
|
133 switch (m_dfType) {
|
c@27
|
134 case DF_HFC: return 0;
|
c@27
|
135 case DF_SPECDIFF: return 1;
|
c@27
|
136 case DF_PHASEDEV: return 2;
|
c@27
|
137 default: case DF_COMPLEXSD: return 3;
|
c@27
|
138 case DF_BROADBAND: return 4;
|
c@27
|
139 }
|
c@27
|
140 } else if (name == "sensitivity") {
|
c@27
|
141 return m_sensitivity;
|
c@27
|
142 }
|
c@27
|
143 return 0.0;
|
c@27
|
144 }
|
c@27
|
145
|
c@27
|
146 void
|
c@27
|
147 OnsetDetector::setParameter(std::string name, float value)
|
c@27
|
148 {
|
c@27
|
149 if (name == "dftype") {
|
c@27
|
150 switch (lrintf(value)) {
|
c@27
|
151 case 0: m_dfType = DF_HFC; break;
|
c@27
|
152 case 1: m_dfType = DF_SPECDIFF; break;
|
c@27
|
153 case 2: m_dfType = DF_PHASEDEV; break;
|
c@27
|
154 default: case 3: m_dfType = DF_COMPLEXSD; break;
|
c@27
|
155 case 4: m_dfType = DF_BROADBAND; break;
|
c@27
|
156 }
|
c@27
|
157 } else if (name == "sensitivity") {
|
c@27
|
158 m_sensitivity = value;
|
c@27
|
159 }
|
c@27
|
160 }
|
c@27
|
161
|
c@27
|
162 bool
|
c@27
|
163 OnsetDetector::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
c@27
|
164 {
|
c@27
|
165 if (m_d) {
|
c@27
|
166 delete m_d;
|
c@27
|
167 m_d = 0;
|
c@27
|
168 }
|
c@27
|
169
|
c@27
|
170 if (channels < getMinChannelCount() ||
|
c@27
|
171 channels > getMaxChannelCount()) {
|
c@27
|
172 std::cerr << "OnsetDetector::initialise: Unsupported channel count: "
|
c@27
|
173 << channels << std::endl;
|
c@27
|
174 return false;
|
c@27
|
175 }
|
c@27
|
176
|
c@27
|
177 if (blockSize != getPreferredStepSize() * 2) {
|
c@27
|
178 std::cerr << "OnsetDetector::initialise: Unsupported block size for this sample rate: "
|
c@27
|
179 << blockSize << " (wanted " << (getPreferredStepSize() * 2) << ")" << std::endl;
|
c@27
|
180 return false;
|
c@27
|
181 }
|
c@27
|
182
|
c@27
|
183 if (stepSize != getPreferredStepSize()) {
|
c@27
|
184 std::cerr << "OnsetDetector::initialise: Unsupported step size for this sample rate: "
|
c@27
|
185 << stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
|
c@27
|
186 return false;
|
c@27
|
187 }
|
c@27
|
188
|
c@27
|
189 DFConfig dfConfig;
|
c@27
|
190 dfConfig.DFType = m_dfType;
|
c@27
|
191 dfConfig.stepSecs = float(stepSize) / m_inputSampleRate;
|
c@27
|
192 dfConfig.stepSize = stepSize;
|
c@27
|
193 dfConfig.frameLength = blockSize;
|
c@27
|
194 dfConfig.dbRise = 6.0 - m_sensitivity / 16.6667;
|
c@27
|
195
|
c@27
|
196 m_d = new OnsetDetectorData(dfConfig);
|
c@27
|
197 return true;
|
c@27
|
198 }
|
c@27
|
199
|
c@27
|
200 void
|
c@27
|
201 OnsetDetector::reset()
|
c@27
|
202 {
|
c@27
|
203 if (m_d) m_d->reset();
|
c@27
|
204 }
|
c@27
|
205
|
c@27
|
206 size_t
|
c@27
|
207 OnsetDetector::getPreferredStepSize() const
|
c@27
|
208 {
|
c@27
|
209 size_t step = size_t(m_inputSampleRate * m_stepSecs + 0.0001);
|
c@27
|
210 // std::cerr << "OnsetDetector::getPreferredStepSize: input sample rate is " << m_inputSampleRate << ", step size is " << step << std::endl;
|
c@27
|
211 return step;
|
c@27
|
212 }
|
c@27
|
213
|
c@27
|
214 size_t
|
c@27
|
215 OnsetDetector::getPreferredBlockSize() const
|
c@27
|
216 {
|
c@27
|
217 return getPreferredStepSize() * 2;
|
c@27
|
218 }
|
c@27
|
219
|
c@27
|
220 OnsetDetector::OutputList
|
c@27
|
221 OnsetDetector::getOutputDescriptors() const
|
c@27
|
222 {
|
c@27
|
223 OutputList list;
|
c@27
|
224
|
c@27
|
225 OutputDescriptor onsets;
|
c@27
|
226 onsets.identifier = "onsets";
|
c@27
|
227 onsets.name = "Note Onsets";
|
c@27
|
228 onsets.description = "Perceived note onset positions";
|
c@27
|
229 onsets.unit = "";
|
c@27
|
230 onsets.hasFixedBinCount = true;
|
c@27
|
231 onsets.binCount = 0;
|
c@27
|
232 onsets.sampleType = OutputDescriptor::VariableSampleRate;
|
c@27
|
233 onsets.sampleRate = 1.0 / m_stepSecs;
|
c@27
|
234
|
c@27
|
235 OutputDescriptor df;
|
c@27
|
236 df.identifier = "detection_fn";
|
c@27
|
237 df.name = "Onset Detection Function";
|
c@27
|
238 df.description = "Probability function of note onset likelihood";
|
c@27
|
239 df.unit = "";
|
c@27
|
240 df.hasFixedBinCount = true;
|
c@27
|
241 df.binCount = 1;
|
c@27
|
242 df.hasKnownExtents = false;
|
c@27
|
243 df.isQuantized = false;
|
c@27
|
244 df.sampleType = OutputDescriptor::OneSamplePerStep;
|
c@27
|
245
|
c@27
|
246 OutputDescriptor sdf;
|
c@27
|
247 sdf.identifier = "smoothed_df";
|
c@27
|
248 sdf.name = "Smoothed Detection Function";
|
c@27
|
249 sdf.description = "Smoothed probability function used for peak-picking";
|
c@27
|
250 sdf.unit = "";
|
c@27
|
251 sdf.hasFixedBinCount = true;
|
c@27
|
252 sdf.binCount = 1;
|
c@27
|
253 sdf.hasKnownExtents = false;
|
c@27
|
254 sdf.isQuantized = false;
|
c@27
|
255
|
c@27
|
256 sdf.sampleType = OutputDescriptor::VariableSampleRate;
|
c@27
|
257
|
c@27
|
258 //!!! SV doesn't seem to handle these correctly in getRemainingFeatures
|
c@27
|
259 // sdf.sampleType = OutputDescriptor::FixedSampleRate;
|
c@27
|
260 sdf.sampleRate = 1.0 / m_stepSecs;
|
c@27
|
261
|
c@27
|
262 list.push_back(onsets);
|
c@27
|
263 list.push_back(df);
|
c@27
|
264 list.push_back(sdf);
|
c@27
|
265
|
c@27
|
266 return list;
|
c@27
|
267 }
|
c@27
|
268
|
c@27
|
269 OnsetDetector::FeatureSet
|
c@27
|
270 OnsetDetector::process(const float *const *inputBuffers,
|
c@27
|
271 Vamp::RealTime /* timestamp */)
|
c@27
|
272 {
|
c@27
|
273 if (!m_d) {
|
c@27
|
274 cerr << "ERROR: OnsetDetector::process: "
|
c@27
|
275 << "OnsetDetector has not been initialised"
|
c@27
|
276 << endl;
|
c@27
|
277 return FeatureSet();
|
c@27
|
278 }
|
c@27
|
279
|
c@27
|
280 size_t len = m_d->dfConfig.frameLength / 2;
|
c@27
|
281
|
c@27
|
282 double *magnitudes = new double[len];
|
c@27
|
283 double *phases = new double[len];
|
c@27
|
284
|
c@27
|
285 // We only support a single input channel
|
c@27
|
286
|
c@27
|
287 for (size_t i = 0; i < len; ++i) {
|
c@27
|
288
|
c@27
|
289 magnitudes[i] = sqrt(inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] +
|
c@27
|
290 inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]);
|
c@27
|
291
|
c@27
|
292 phases[i] = atan2(-inputBuffers[0][i*2+1], inputBuffers[0][i*2]);
|
c@27
|
293 }
|
c@27
|
294
|
c@27
|
295 double output = m_d->df->process(magnitudes, phases);
|
c@27
|
296
|
c@27
|
297 delete[] magnitudes;
|
c@27
|
298 delete[] phases;
|
c@27
|
299
|
c@27
|
300 m_d->dfOutput.push_back(output);
|
c@27
|
301
|
c@27
|
302 FeatureSet returnFeatures;
|
c@27
|
303
|
c@27
|
304 Feature feature;
|
c@27
|
305 feature.hasTimestamp = false;
|
c@27
|
306 feature.values.push_back(output);
|
c@27
|
307
|
c@27
|
308 returnFeatures[1].push_back(feature); // detection function is output 1
|
c@27
|
309 return returnFeatures;
|
c@27
|
310 }
|
c@27
|
311
|
c@27
|
312 OnsetDetector::FeatureSet
|
c@27
|
313 OnsetDetector::getRemainingFeatures()
|
c@27
|
314 {
|
c@27
|
315 if (!m_d) {
|
c@27
|
316 cerr << "ERROR: OnsetDetector::getRemainingFeatures: "
|
c@27
|
317 << "OnsetDetector has not been initialised"
|
c@27
|
318 << endl;
|
c@27
|
319 return FeatureSet();
|
c@27
|
320 }
|
c@27
|
321
|
c@27
|
322 if (m_dfType == DF_BROADBAND) {
|
c@27
|
323 for (size_t i = 0; i < m_d->dfOutput.size(); ++i) {
|
c@27
|
324 if (m_d->dfOutput[i] < ((110 - m_sensitivity) *
|
c@27
|
325 m_d->dfConfig.frameLength) / 200) {
|
c@27
|
326 m_d->dfOutput[i] = 0;
|
c@27
|
327 }
|
c@27
|
328 }
|
c@27
|
329 }
|
c@27
|
330
|
c@27
|
331 double aCoeffs[] = { 1.0000, -0.5949, 0.2348 };
|
c@27
|
332 double bCoeffs[] = { 0.1600, 0.3200, 0.1600 };
|
c@27
|
333
|
c@27
|
334 FeatureSet returnFeatures;
|
c@27
|
335
|
c@27
|
336 PPickParams ppParams;
|
c@27
|
337 ppParams.length = m_d->dfOutput.size();
|
c@27
|
338 // tau and cutoff appear to be unused in PeakPicking, but I've
|
c@27
|
339 // inserted some moderately plausible values rather than leave
|
c@27
|
340 // them unset. The QuadThresh values come from trial and error.
|
c@27
|
341 // The rest of these are copied from ttParams in the BeatTracker
|
c@27
|
342 // code: I don't claim to know whether they're good or not --cc
|
c@27
|
343 ppParams.tau = m_d->dfConfig.stepSize / m_inputSampleRate;
|
c@27
|
344 ppParams.alpha = 9;
|
c@27
|
345 ppParams.cutoff = m_inputSampleRate/4;
|
c@27
|
346 ppParams.LPOrd = 2;
|
c@27
|
347 ppParams.LPACoeffs = aCoeffs;
|
c@27
|
348 ppParams.LPBCoeffs = bCoeffs;
|
c@27
|
349 ppParams.WinT.post = 8;
|
c@27
|
350 ppParams.WinT.pre = 7;
|
c@27
|
351 ppParams.QuadThresh.a = (100 - m_sensitivity) / 1000.0;
|
c@27
|
352 ppParams.QuadThresh.b = 0;
|
c@27
|
353 ppParams.QuadThresh.c = (100 - m_sensitivity) / 1500.0;
|
c@27
|
354
|
c@27
|
355 PeakPicking peakPicker(ppParams);
|
c@27
|
356
|
c@27
|
357 double *ppSrc = new double[ppParams.length];
|
c@27
|
358 for (unsigned int i = 0; i < ppParams.length; ++i) {
|
c@27
|
359 ppSrc[i] = m_d->dfOutput[i];
|
c@27
|
360 }
|
c@27
|
361
|
c@27
|
362 vector<int> onsets;
|
c@27
|
363 peakPicker.process(ppSrc, ppParams.length, onsets);
|
c@27
|
364
|
c@27
|
365 for (size_t i = 0; i < onsets.size(); ++i) {
|
c@27
|
366
|
c@27
|
367 size_t index = onsets[i];
|
c@27
|
368
|
c@27
|
369 if (m_dfType != DF_BROADBAND) {
|
c@27
|
370 double prevDiff = 0.0;
|
c@27
|
371 while (index > 1) {
|
c@27
|
372 double diff = ppSrc[index] - ppSrc[index-1];
|
c@27
|
373 if (diff < prevDiff * 0.9) break;
|
c@27
|
374 prevDiff = diff;
|
c@27
|
375 --index;
|
c@27
|
376 }
|
c@27
|
377 }
|
c@27
|
378
|
c@27
|
379 size_t frame = index * m_d->dfConfig.stepSize;
|
c@27
|
380
|
c@27
|
381 Feature feature;
|
c@27
|
382 feature.hasTimestamp = true;
|
c@27
|
383 feature.timestamp = Vamp::RealTime::frame2RealTime
|
c@27
|
384 (frame, lrintf(m_inputSampleRate));
|
c@27
|
385
|
c@27
|
386 returnFeatures[0].push_back(feature); // onsets are output 0
|
c@27
|
387 }
|
c@27
|
388
|
c@27
|
389 for (int i = 0; i < ppParams.length; ++i) {
|
c@27
|
390
|
c@27
|
391 Feature feature;
|
c@27
|
392 // feature.hasTimestamp = false;
|
c@27
|
393 feature.hasTimestamp = true;
|
c@27
|
394 size_t frame = i * m_d->dfConfig.stepSize;
|
c@27
|
395 feature.timestamp = Vamp::RealTime::frame2RealTime
|
c@27
|
396 (frame, lrintf(m_inputSampleRate));
|
c@27
|
397
|
c@27
|
398 feature.values.push_back(ppSrc[i]);
|
c@27
|
399 returnFeatures[2].push_back(feature); // smoothed df is output 2
|
c@27
|
400 }
|
c@27
|
401
|
c@27
|
402 return returnFeatures;
|
c@27
|
403 }
|
c@27
|
404
|