Mercurial > hg > qm-vamp-plugins
diff plugins/OnsetDetect.cpp @ 27:3256bfa04ed8
* split out tempo/beat/onset plugin into tempo/beat and onset
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Mon, 21 May 2007 13:09:12 +0000 |
parents | |
children | b300de89ea30 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/plugins/OnsetDetect.cpp Mon May 21 13:09:12 2007 +0000 @@ -0,0 +1,404 @@ +/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ + +/* + QM Vamp Plugin Set + + Centre for Digital Music, Queen Mary, University of London. + All rights reserved. +*/ + +#include "OnsetDetect.h" + +#include <dsp/onsets/DetectionFunction.h> +#include <dsp/onsets/PeakPicking.h> +#include <dsp/tempotracking/TempoTrack.h> + +using std::string; +using std::vector; +using std::cerr; +using std::endl; + +float OnsetDetector::m_stepSecs = 0.01161; + +class OnsetDetectorData +{ +public: + OnsetDetectorData(const DFConfig &config) : dfConfig(config) { + df = new DetectionFunction(config); + } + ~OnsetDetectorData() { + delete df; + } + void reset() { + delete df; + df = new DetectionFunction(dfConfig); + dfOutput.clear(); + } + + DFConfig dfConfig; + DetectionFunction *df; + vector<double> dfOutput; +}; + + +OnsetDetector::OnsetDetector(float inputSampleRate) : + Vamp::Plugin(inputSampleRate), + m_d(0), + m_dfType(DF_COMPLEXSD), + m_sensitivity(50) +{ +} + +OnsetDetector::~OnsetDetector() +{ + delete m_d; +} + +string +OnsetDetector::getIdentifier() const +{ + return "qm-onsetdetector"; +} + +string +OnsetDetector::getName() const +{ + return "Note Onset Detector"; +} + +string +OnsetDetector::getDescription() const +{ + return "Estimate individual note onset positions"; +} + +string +OnsetDetector::getMaker() const +{ + return "Christian Landone, Chris Duxbury and Juan Pablo Bello, Queen Mary, University of London"; +} + +int +OnsetDetector::getPluginVersion() const +{ + return 1; +} + +string +OnsetDetector::getCopyright() const +{ + return "Copyright (c) 2006-2007 - All Rights Reserved"; +} + +OnsetDetector::ParameterList +OnsetDetector::getParameterDescriptors() const +{ + ParameterList list; + + ParameterDescriptor desc; + desc.identifier = "dftype"; + desc.name = "Onset Detection Function Type"; + desc.description = "Method used to calculate the onset detection function"; + desc.minValue = 0; + desc.maxValue = 3; + desc.defaultValue = 3; + desc.isQuantized = true; + desc.quantizeStep = 1; + desc.valueNames.push_back("High-Frequency Content"); + desc.valueNames.push_back("Spectral Difference"); + desc.valueNames.push_back("Phase Deviation"); + desc.valueNames.push_back("Complex Domain"); + desc.valueNames.push_back("Broadband Energy Rise"); + list.push_back(desc); + + desc.identifier = "sensitivity"; + desc.name = "Onset Detector Sensitivity"; + desc.description = "Sensitivity of peak-picker for onset detection"; + desc.minValue = 0; + desc.maxValue = 100; + desc.defaultValue = 50; + desc.isQuantized = true; + desc.quantizeStep = 1; + desc.unit = "%"; + desc.valueNames.clear(); + list.push_back(desc); + + return list; +} + +float +OnsetDetector::getParameter(std::string name) const +{ + if (name == "dftype") { + switch (m_dfType) { + case DF_HFC: return 0; + case DF_SPECDIFF: return 1; + case DF_PHASEDEV: return 2; + default: case DF_COMPLEXSD: return 3; + case DF_BROADBAND: return 4; + } + } else if (name == "sensitivity") { + return m_sensitivity; + } + return 0.0; +} + +void +OnsetDetector::setParameter(std::string name, float value) +{ + if (name == "dftype") { + switch (lrintf(value)) { + case 0: m_dfType = DF_HFC; break; + case 1: m_dfType = DF_SPECDIFF; break; + case 2: m_dfType = DF_PHASEDEV; break; + default: case 3: m_dfType = DF_COMPLEXSD; break; + case 4: m_dfType = DF_BROADBAND; break; + } + } else if (name == "sensitivity") { + m_sensitivity = value; + } +} + +bool +OnsetDetector::initialise(size_t channels, size_t stepSize, size_t blockSize) +{ + if (m_d) { + delete m_d; + m_d = 0; + } + + if (channels < getMinChannelCount() || + channels > getMaxChannelCount()) { + std::cerr << "OnsetDetector::initialise: Unsupported channel count: " + << channels << std::endl; + return false; + } + + if (blockSize != getPreferredStepSize() * 2) { + std::cerr << "OnsetDetector::initialise: Unsupported block size for this sample rate: " + << blockSize << " (wanted " << (getPreferredStepSize() * 2) << ")" << std::endl; + return false; + } + + if (stepSize != getPreferredStepSize()) { + std::cerr << "OnsetDetector::initialise: Unsupported step size for this sample rate: " + << stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl; + return false; + } + + DFConfig dfConfig; + dfConfig.DFType = m_dfType; + dfConfig.stepSecs = float(stepSize) / m_inputSampleRate; + dfConfig.stepSize = stepSize; + dfConfig.frameLength = blockSize; + dfConfig.dbRise = 6.0 - m_sensitivity / 16.6667; + + m_d = new OnsetDetectorData(dfConfig); + return true; +} + +void +OnsetDetector::reset() +{ + if (m_d) m_d->reset(); +} + +size_t +OnsetDetector::getPreferredStepSize() const +{ + size_t step = size_t(m_inputSampleRate * m_stepSecs + 0.0001); +// std::cerr << "OnsetDetector::getPreferredStepSize: input sample rate is " << m_inputSampleRate << ", step size is " << step << std::endl; + return step; +} + +size_t +OnsetDetector::getPreferredBlockSize() const +{ + return getPreferredStepSize() * 2; +} + +OnsetDetector::OutputList +OnsetDetector::getOutputDescriptors() const +{ + OutputList list; + + OutputDescriptor onsets; + onsets.identifier = "onsets"; + onsets.name = "Note Onsets"; + onsets.description = "Perceived note onset positions"; + onsets.unit = ""; + onsets.hasFixedBinCount = true; + onsets.binCount = 0; + onsets.sampleType = OutputDescriptor::VariableSampleRate; + onsets.sampleRate = 1.0 / m_stepSecs; + + OutputDescriptor df; + df.identifier = "detection_fn"; + df.name = "Onset Detection Function"; + df.description = "Probability function of note onset likelihood"; + df.unit = ""; + df.hasFixedBinCount = true; + df.binCount = 1; + df.hasKnownExtents = false; + df.isQuantized = false; + df.sampleType = OutputDescriptor::OneSamplePerStep; + + OutputDescriptor sdf; + sdf.identifier = "smoothed_df"; + sdf.name = "Smoothed Detection Function"; + sdf.description = "Smoothed probability function used for peak-picking"; + sdf.unit = ""; + sdf.hasFixedBinCount = true; + sdf.binCount = 1; + sdf.hasKnownExtents = false; + sdf.isQuantized = false; + + sdf.sampleType = OutputDescriptor::VariableSampleRate; + +//!!! SV doesn't seem to handle these correctly in getRemainingFeatures +// sdf.sampleType = OutputDescriptor::FixedSampleRate; + sdf.sampleRate = 1.0 / m_stepSecs; + + list.push_back(onsets); + list.push_back(df); + list.push_back(sdf); + + return list; +} + +OnsetDetector::FeatureSet +OnsetDetector::process(const float *const *inputBuffers, + Vamp::RealTime /* timestamp */) +{ + if (!m_d) { + cerr << "ERROR: OnsetDetector::process: " + << "OnsetDetector has not been initialised" + << endl; + return FeatureSet(); + } + + size_t len = m_d->dfConfig.frameLength / 2; + + double *magnitudes = new double[len]; + double *phases = new double[len]; + + // We only support a single input channel + + for (size_t i = 0; i < len; ++i) { + + magnitudes[i] = sqrt(inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] + + inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]); + + phases[i] = atan2(-inputBuffers[0][i*2+1], inputBuffers[0][i*2]); + } + + double output = m_d->df->process(magnitudes, phases); + + delete[] magnitudes; + delete[] phases; + + m_d->dfOutput.push_back(output); + + FeatureSet returnFeatures; + + Feature feature; + feature.hasTimestamp = false; + feature.values.push_back(output); + + returnFeatures[1].push_back(feature); // detection function is output 1 + return returnFeatures; +} + +OnsetDetector::FeatureSet +OnsetDetector::getRemainingFeatures() +{ + if (!m_d) { + cerr << "ERROR: OnsetDetector::getRemainingFeatures: " + << "OnsetDetector has not been initialised" + << endl; + return FeatureSet(); + } + + if (m_dfType == DF_BROADBAND) { + for (size_t i = 0; i < m_d->dfOutput.size(); ++i) { + if (m_d->dfOutput[i] < ((110 - m_sensitivity) * + m_d->dfConfig.frameLength) / 200) { + m_d->dfOutput[i] = 0; + } + } + } + + double aCoeffs[] = { 1.0000, -0.5949, 0.2348 }; + double bCoeffs[] = { 0.1600, 0.3200, 0.1600 }; + + FeatureSet returnFeatures; + + PPickParams ppParams; + ppParams.length = m_d->dfOutput.size(); + // tau and cutoff appear to be unused in PeakPicking, but I've + // inserted some moderately plausible values rather than leave + // them unset. The QuadThresh values come from trial and error. + // The rest of these are copied from ttParams in the BeatTracker + // code: I don't claim to know whether they're good or not --cc + ppParams.tau = m_d->dfConfig.stepSize / m_inputSampleRate; + ppParams.alpha = 9; + ppParams.cutoff = m_inputSampleRate/4; + ppParams.LPOrd = 2; + ppParams.LPACoeffs = aCoeffs; + ppParams.LPBCoeffs = bCoeffs; + ppParams.WinT.post = 8; + ppParams.WinT.pre = 7; + ppParams.QuadThresh.a = (100 - m_sensitivity) / 1000.0; + ppParams.QuadThresh.b = 0; + ppParams.QuadThresh.c = (100 - m_sensitivity) / 1500.0; + + PeakPicking peakPicker(ppParams); + + double *ppSrc = new double[ppParams.length]; + for (unsigned int i = 0; i < ppParams.length; ++i) { + ppSrc[i] = m_d->dfOutput[i]; + } + + vector<int> onsets; + peakPicker.process(ppSrc, ppParams.length, onsets); + + for (size_t i = 0; i < onsets.size(); ++i) { + + size_t index = onsets[i]; + + if (m_dfType != DF_BROADBAND) { + double prevDiff = 0.0; + while (index > 1) { + double diff = ppSrc[index] - ppSrc[index-1]; + if (diff < prevDiff * 0.9) break; + prevDiff = diff; + --index; + } + } + + size_t frame = index * m_d->dfConfig.stepSize; + + Feature feature; + feature.hasTimestamp = true; + feature.timestamp = Vamp::RealTime::frame2RealTime + (frame, lrintf(m_inputSampleRate)); + + returnFeatures[0].push_back(feature); // onsets are output 0 + } + + for (int i = 0; i < ppParams.length; ++i) { + + Feature feature; +// feature.hasTimestamp = false; + feature.hasTimestamp = true; + size_t frame = i * m_d->dfConfig.stepSize; + feature.timestamp = Vamp::RealTime::frame2RealTime + (frame, lrintf(m_inputSampleRate)); + + feature.values.push_back(ppSrc[i]); + returnFeatures[2].push_back(feature); // smoothed df is output 2 + } + + return returnFeatures; +} +