annotate plugins/OnsetDetect.cpp @ 28:b300de89ea30

...
author Chris Cannam <c.cannam@qmul.ac.uk>
date Wed, 23 May 2007 15:21:53 +0000
parents 3256bfa04ed8
children 56fe3bd9de6e
rev   line source
c@27 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@27 2
c@27 3 /*
c@27 4 QM Vamp Plugin Set
c@27 5
c@27 6 Centre for Digital Music, Queen Mary, University of London.
c@27 7 All rights reserved.
c@27 8 */
c@27 9
c@27 10 #include "OnsetDetect.h"
c@27 11
c@27 12 #include <dsp/onsets/DetectionFunction.h>
c@27 13 #include <dsp/onsets/PeakPicking.h>
c@27 14 #include <dsp/tempotracking/TempoTrack.h>
c@27 15
c@27 16 using std::string;
c@27 17 using std::vector;
c@27 18 using std::cerr;
c@27 19 using std::endl;
c@27 20
c@27 21 float OnsetDetector::m_stepSecs = 0.01161;
c@27 22
c@27 23 class OnsetDetectorData
c@27 24 {
c@27 25 public:
c@27 26 OnsetDetectorData(const DFConfig &config) : dfConfig(config) {
c@27 27 df = new DetectionFunction(config);
c@27 28 }
c@27 29 ~OnsetDetectorData() {
c@27 30 delete df;
c@27 31 }
c@27 32 void reset() {
c@27 33 delete df;
c@27 34 df = new DetectionFunction(dfConfig);
c@27 35 dfOutput.clear();
c@27 36 }
c@27 37
c@27 38 DFConfig dfConfig;
c@27 39 DetectionFunction *df;
c@27 40 vector<double> dfOutput;
c@27 41 };
c@27 42
c@27 43
c@27 44 OnsetDetector::OnsetDetector(float inputSampleRate) :
c@27 45 Vamp::Plugin(inputSampleRate),
c@27 46 m_d(0),
c@27 47 m_dfType(DF_COMPLEXSD),
c@27 48 m_sensitivity(50)
c@27 49 {
c@27 50 }
c@27 51
c@27 52 OnsetDetector::~OnsetDetector()
c@27 53 {
c@27 54 delete m_d;
c@27 55 }
c@27 56
c@27 57 string
c@27 58 OnsetDetector::getIdentifier() const
c@27 59 {
c@27 60 return "qm-onsetdetector";
c@27 61 }
c@27 62
c@27 63 string
c@27 64 OnsetDetector::getName() const
c@27 65 {
c@27 66 return "Note Onset Detector";
c@27 67 }
c@27 68
c@27 69 string
c@27 70 OnsetDetector::getDescription() const
c@27 71 {
c@27 72 return "Estimate individual note onset positions";
c@27 73 }
c@27 74
c@27 75 string
c@27 76 OnsetDetector::getMaker() const
c@27 77 {
c@27 78 return "Christian Landone, Chris Duxbury and Juan Pablo Bello, Queen Mary, University of London";
c@27 79 }
c@27 80
c@27 81 int
c@27 82 OnsetDetector::getPluginVersion() const
c@27 83 {
c@27 84 return 1;
c@27 85 }
c@27 86
c@27 87 string
c@27 88 OnsetDetector::getCopyright() const
c@27 89 {
c@27 90 return "Copyright (c) 2006-2007 - All Rights Reserved";
c@27 91 }
c@27 92
c@27 93 OnsetDetector::ParameterList
c@27 94 OnsetDetector::getParameterDescriptors() const
c@27 95 {
c@27 96 ParameterList list;
c@27 97
c@27 98 ParameterDescriptor desc;
c@27 99 desc.identifier = "dftype";
c@27 100 desc.name = "Onset Detection Function Type";
c@27 101 desc.description = "Method used to calculate the onset detection function";
c@27 102 desc.minValue = 0;
c@27 103 desc.maxValue = 3;
c@27 104 desc.defaultValue = 3;
c@27 105 desc.isQuantized = true;
c@27 106 desc.quantizeStep = 1;
c@27 107 desc.valueNames.push_back("High-Frequency Content");
c@27 108 desc.valueNames.push_back("Spectral Difference");
c@27 109 desc.valueNames.push_back("Phase Deviation");
c@27 110 desc.valueNames.push_back("Complex Domain");
c@27 111 desc.valueNames.push_back("Broadband Energy Rise");
c@27 112 list.push_back(desc);
c@27 113
c@27 114 desc.identifier = "sensitivity";
c@27 115 desc.name = "Onset Detector Sensitivity";
c@27 116 desc.description = "Sensitivity of peak-picker for onset detection";
c@27 117 desc.minValue = 0;
c@27 118 desc.maxValue = 100;
c@27 119 desc.defaultValue = 50;
c@27 120 desc.isQuantized = true;
c@27 121 desc.quantizeStep = 1;
c@27 122 desc.unit = "%";
c@27 123 desc.valueNames.clear();
c@27 124 list.push_back(desc);
c@27 125
c@27 126 return list;
c@27 127 }
c@27 128
c@27 129 float
c@27 130 OnsetDetector::getParameter(std::string name) const
c@27 131 {
c@27 132 if (name == "dftype") {
c@27 133 switch (m_dfType) {
c@27 134 case DF_HFC: return 0;
c@27 135 case DF_SPECDIFF: return 1;
c@27 136 case DF_PHASEDEV: return 2;
c@27 137 default: case DF_COMPLEXSD: return 3;
c@27 138 case DF_BROADBAND: return 4;
c@27 139 }
c@27 140 } else if (name == "sensitivity") {
c@27 141 return m_sensitivity;
c@27 142 }
c@27 143 return 0.0;
c@27 144 }
c@27 145
c@27 146 void
c@27 147 OnsetDetector::setParameter(std::string name, float value)
c@27 148 {
c@27 149 if (name == "dftype") {
c@27 150 switch (lrintf(value)) {
c@27 151 case 0: m_dfType = DF_HFC; break;
c@27 152 case 1: m_dfType = DF_SPECDIFF; break;
c@27 153 case 2: m_dfType = DF_PHASEDEV; break;
c@27 154 default: case 3: m_dfType = DF_COMPLEXSD; break;
c@27 155 case 4: m_dfType = DF_BROADBAND; break;
c@27 156 }
c@27 157 } else if (name == "sensitivity") {
c@27 158 m_sensitivity = value;
c@27 159 }
c@27 160 }
c@27 161
c@27 162 bool
c@27 163 OnsetDetector::initialise(size_t channels, size_t stepSize, size_t blockSize)
c@27 164 {
c@27 165 if (m_d) {
c@27 166 delete m_d;
c@27 167 m_d = 0;
c@27 168 }
c@27 169
c@27 170 if (channels < getMinChannelCount() ||
c@27 171 channels > getMaxChannelCount()) {
c@27 172 std::cerr << "OnsetDetector::initialise: Unsupported channel count: "
c@27 173 << channels << std::endl;
c@27 174 return false;
c@27 175 }
c@27 176
c@28 177 if (stepSize != getPreferredStepSize()) {
c@28 178 std::cerr << "ERROR: OnsetDetector::initialise: Unsupported step size for this sample rate: "
c@28 179 << stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
c@27 180 return false;
c@27 181 }
c@27 182
c@28 183 if (blockSize != getPreferredBlockSize()) {
c@28 184 std::cerr << "WARNING: OnsetDetector::initialise: Unsupported block size for this sample rate: "
c@28 185 << blockSize << " (wanted " << (getPreferredBlockSize()) << ")" << std::endl;
c@28 186 // return false;
c@27 187 }
c@27 188
c@27 189 DFConfig dfConfig;
c@27 190 dfConfig.DFType = m_dfType;
c@27 191 dfConfig.stepSecs = float(stepSize) / m_inputSampleRate;
c@27 192 dfConfig.stepSize = stepSize;
c@27 193 dfConfig.frameLength = blockSize;
c@27 194 dfConfig.dbRise = 6.0 - m_sensitivity / 16.6667;
c@27 195
c@27 196 m_d = new OnsetDetectorData(dfConfig);
c@27 197 return true;
c@27 198 }
c@27 199
c@27 200 void
c@27 201 OnsetDetector::reset()
c@27 202 {
c@27 203 if (m_d) m_d->reset();
c@27 204 }
c@27 205
c@27 206 size_t
c@27 207 OnsetDetector::getPreferredStepSize() const
c@27 208 {
c@27 209 size_t step = size_t(m_inputSampleRate * m_stepSecs + 0.0001);
c@27 210 // std::cerr << "OnsetDetector::getPreferredStepSize: input sample rate is " << m_inputSampleRate << ", step size is " << step << std::endl;
c@27 211 return step;
c@27 212 }
c@27 213
c@27 214 size_t
c@27 215 OnsetDetector::getPreferredBlockSize() const
c@27 216 {
c@27 217 return getPreferredStepSize() * 2;
c@27 218 }
c@27 219
c@27 220 OnsetDetector::OutputList
c@27 221 OnsetDetector::getOutputDescriptors() const
c@27 222 {
c@27 223 OutputList list;
c@27 224
c@27 225 OutputDescriptor onsets;
c@27 226 onsets.identifier = "onsets";
c@27 227 onsets.name = "Note Onsets";
c@27 228 onsets.description = "Perceived note onset positions";
c@27 229 onsets.unit = "";
c@27 230 onsets.hasFixedBinCount = true;
c@27 231 onsets.binCount = 0;
c@27 232 onsets.sampleType = OutputDescriptor::VariableSampleRate;
c@27 233 onsets.sampleRate = 1.0 / m_stepSecs;
c@27 234
c@27 235 OutputDescriptor df;
c@27 236 df.identifier = "detection_fn";
c@27 237 df.name = "Onset Detection Function";
c@27 238 df.description = "Probability function of note onset likelihood";
c@27 239 df.unit = "";
c@27 240 df.hasFixedBinCount = true;
c@27 241 df.binCount = 1;
c@27 242 df.hasKnownExtents = false;
c@27 243 df.isQuantized = false;
c@27 244 df.sampleType = OutputDescriptor::OneSamplePerStep;
c@27 245
c@27 246 OutputDescriptor sdf;
c@27 247 sdf.identifier = "smoothed_df";
c@27 248 sdf.name = "Smoothed Detection Function";
c@27 249 sdf.description = "Smoothed probability function used for peak-picking";
c@27 250 sdf.unit = "";
c@27 251 sdf.hasFixedBinCount = true;
c@27 252 sdf.binCount = 1;
c@27 253 sdf.hasKnownExtents = false;
c@27 254 sdf.isQuantized = false;
c@27 255
c@27 256 sdf.sampleType = OutputDescriptor::VariableSampleRate;
c@27 257
c@27 258 //!!! SV doesn't seem to handle these correctly in getRemainingFeatures
c@27 259 // sdf.sampleType = OutputDescriptor::FixedSampleRate;
c@27 260 sdf.sampleRate = 1.0 / m_stepSecs;
c@27 261
c@27 262 list.push_back(onsets);
c@27 263 list.push_back(df);
c@27 264 list.push_back(sdf);
c@27 265
c@27 266 return list;
c@27 267 }
c@27 268
c@27 269 OnsetDetector::FeatureSet
c@27 270 OnsetDetector::process(const float *const *inputBuffers,
c@27 271 Vamp::RealTime /* timestamp */)
c@27 272 {
c@27 273 if (!m_d) {
c@27 274 cerr << "ERROR: OnsetDetector::process: "
c@27 275 << "OnsetDetector has not been initialised"
c@27 276 << endl;
c@27 277 return FeatureSet();
c@27 278 }
c@27 279
c@27 280 size_t len = m_d->dfConfig.frameLength / 2;
c@27 281
c@27 282 double *magnitudes = new double[len];
c@27 283 double *phases = new double[len];
c@27 284
c@27 285 // We only support a single input channel
c@27 286
c@27 287 for (size_t i = 0; i < len; ++i) {
c@27 288
c@27 289 magnitudes[i] = sqrt(inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] +
c@27 290 inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]);
c@27 291
c@27 292 phases[i] = atan2(-inputBuffers[0][i*2+1], inputBuffers[0][i*2]);
c@27 293 }
c@27 294
c@27 295 double output = m_d->df->process(magnitudes, phases);
c@27 296
c@27 297 delete[] magnitudes;
c@27 298 delete[] phases;
c@27 299
c@27 300 m_d->dfOutput.push_back(output);
c@27 301
c@27 302 FeatureSet returnFeatures;
c@27 303
c@27 304 Feature feature;
c@27 305 feature.hasTimestamp = false;
c@27 306 feature.values.push_back(output);
c@27 307
c@27 308 returnFeatures[1].push_back(feature); // detection function is output 1
c@27 309 return returnFeatures;
c@27 310 }
c@27 311
c@27 312 OnsetDetector::FeatureSet
c@27 313 OnsetDetector::getRemainingFeatures()
c@27 314 {
c@27 315 if (!m_d) {
c@27 316 cerr << "ERROR: OnsetDetector::getRemainingFeatures: "
c@27 317 << "OnsetDetector has not been initialised"
c@27 318 << endl;
c@27 319 return FeatureSet();
c@27 320 }
c@27 321
c@27 322 if (m_dfType == DF_BROADBAND) {
c@27 323 for (size_t i = 0; i < m_d->dfOutput.size(); ++i) {
c@27 324 if (m_d->dfOutput[i] < ((110 - m_sensitivity) *
c@27 325 m_d->dfConfig.frameLength) / 200) {
c@27 326 m_d->dfOutput[i] = 0;
c@27 327 }
c@27 328 }
c@27 329 }
c@27 330
c@27 331 double aCoeffs[] = { 1.0000, -0.5949, 0.2348 };
c@27 332 double bCoeffs[] = { 0.1600, 0.3200, 0.1600 };
c@27 333
c@27 334 FeatureSet returnFeatures;
c@27 335
c@27 336 PPickParams ppParams;
c@27 337 ppParams.length = m_d->dfOutput.size();
c@27 338 // tau and cutoff appear to be unused in PeakPicking, but I've
c@27 339 // inserted some moderately plausible values rather than leave
c@27 340 // them unset. The QuadThresh values come from trial and error.
c@27 341 // The rest of these are copied from ttParams in the BeatTracker
c@27 342 // code: I don't claim to know whether they're good or not --cc
c@27 343 ppParams.tau = m_d->dfConfig.stepSize / m_inputSampleRate;
c@27 344 ppParams.alpha = 9;
c@27 345 ppParams.cutoff = m_inputSampleRate/4;
c@27 346 ppParams.LPOrd = 2;
c@27 347 ppParams.LPACoeffs = aCoeffs;
c@27 348 ppParams.LPBCoeffs = bCoeffs;
c@27 349 ppParams.WinT.post = 8;
c@27 350 ppParams.WinT.pre = 7;
c@27 351 ppParams.QuadThresh.a = (100 - m_sensitivity) / 1000.0;
c@27 352 ppParams.QuadThresh.b = 0;
c@27 353 ppParams.QuadThresh.c = (100 - m_sensitivity) / 1500.0;
c@27 354
c@27 355 PeakPicking peakPicker(ppParams);
c@27 356
c@27 357 double *ppSrc = new double[ppParams.length];
c@27 358 for (unsigned int i = 0; i < ppParams.length; ++i) {
c@27 359 ppSrc[i] = m_d->dfOutput[i];
c@27 360 }
c@27 361
c@27 362 vector<int> onsets;
c@27 363 peakPicker.process(ppSrc, ppParams.length, onsets);
c@27 364
c@27 365 for (size_t i = 0; i < onsets.size(); ++i) {
c@27 366
c@27 367 size_t index = onsets[i];
c@27 368
c@27 369 if (m_dfType != DF_BROADBAND) {
c@27 370 double prevDiff = 0.0;
c@27 371 while (index > 1) {
c@27 372 double diff = ppSrc[index] - ppSrc[index-1];
c@27 373 if (diff < prevDiff * 0.9) break;
c@27 374 prevDiff = diff;
c@27 375 --index;
c@27 376 }
c@27 377 }
c@27 378
c@27 379 size_t frame = index * m_d->dfConfig.stepSize;
c@27 380
c@27 381 Feature feature;
c@27 382 feature.hasTimestamp = true;
c@27 383 feature.timestamp = Vamp::RealTime::frame2RealTime
c@27 384 (frame, lrintf(m_inputSampleRate));
c@27 385
c@27 386 returnFeatures[0].push_back(feature); // onsets are output 0
c@27 387 }
c@27 388
c@27 389 for (int i = 0; i < ppParams.length; ++i) {
c@27 390
c@27 391 Feature feature;
c@27 392 // feature.hasTimestamp = false;
c@27 393 feature.hasTimestamp = true;
c@27 394 size_t frame = i * m_d->dfConfig.stepSize;
c@27 395 feature.timestamp = Vamp::RealTime::frame2RealTime
c@27 396 (frame, lrintf(m_inputSampleRate));
c@27 397
c@27 398 feature.values.push_back(ppSrc[i]);
c@27 399 returnFeatures[2].push_back(feature); // smoothed df is output 2
c@27 400 }
c@27 401
c@27 402 return returnFeatures;
c@27 403 }
c@27 404