c@27
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@27
|
2
|
c@27
|
3 /*
|
c@27
|
4 QM Vamp Plugin Set
|
c@27
|
5
|
c@27
|
6 Centre for Digital Music, Queen Mary, University of London.
|
c@27
|
7 All rights reserved.
|
c@27
|
8 */
|
c@27
|
9
|
c@27
|
10 #include "OnsetDetect.h"
|
c@27
|
11
|
c@27
|
12 #include <dsp/onsets/DetectionFunction.h>
|
c@27
|
13 #include <dsp/onsets/PeakPicking.h>
|
c@27
|
14 #include <dsp/tempotracking/TempoTrack.h>
|
c@27
|
15
|
c@27
|
16 using std::string;
|
c@27
|
17 using std::vector;
|
c@27
|
18 using std::cerr;
|
c@27
|
19 using std::endl;
|
c@27
|
20
|
c@32
|
21 float OnsetDetector::m_preferredStepSecs = 0.01161;
|
c@27
|
22
|
c@27
|
23 class OnsetDetectorData
|
c@27
|
24 {
|
c@27
|
25 public:
|
c@27
|
26 OnsetDetectorData(const DFConfig &config) : dfConfig(config) {
|
c@27
|
27 df = new DetectionFunction(config);
|
c@27
|
28 }
|
c@27
|
29 ~OnsetDetectorData() {
|
c@27
|
30 delete df;
|
c@27
|
31 }
|
c@27
|
32 void reset() {
|
c@27
|
33 delete df;
|
c@27
|
34 df = new DetectionFunction(dfConfig);
|
c@27
|
35 dfOutput.clear();
|
c@27
|
36 }
|
c@27
|
37
|
c@27
|
38 DFConfig dfConfig;
|
c@27
|
39 DetectionFunction *df;
|
c@27
|
40 vector<double> dfOutput;
|
c@27
|
41 };
|
c@27
|
42
|
c@27
|
43
|
c@27
|
44 OnsetDetector::OnsetDetector(float inputSampleRate) :
|
c@27
|
45 Vamp::Plugin(inputSampleRate),
|
c@27
|
46 m_d(0),
|
c@27
|
47 m_dfType(DF_COMPLEXSD),
|
c@30
|
48 m_sensitivity(50),
|
c@30
|
49 m_whiten(false)
|
c@27
|
50 {
|
c@27
|
51 }
|
c@27
|
52
|
c@27
|
53 OnsetDetector::~OnsetDetector()
|
c@27
|
54 {
|
c@27
|
55 delete m_d;
|
c@27
|
56 }
|
c@27
|
57
|
c@27
|
58 string
|
c@27
|
59 OnsetDetector::getIdentifier() const
|
c@27
|
60 {
|
c@27
|
61 return "qm-onsetdetector";
|
c@27
|
62 }
|
c@27
|
63
|
c@27
|
64 string
|
c@27
|
65 OnsetDetector::getName() const
|
c@27
|
66 {
|
c@27
|
67 return "Note Onset Detector";
|
c@27
|
68 }
|
c@27
|
69
|
c@27
|
70 string
|
c@27
|
71 OnsetDetector::getDescription() const
|
c@27
|
72 {
|
c@27
|
73 return "Estimate individual note onset positions";
|
c@27
|
74 }
|
c@27
|
75
|
c@27
|
76 string
|
c@27
|
77 OnsetDetector::getMaker() const
|
c@27
|
78 {
|
c@50
|
79 return "Queen Mary, University of London";
|
c@27
|
80 }
|
c@27
|
81
|
c@27
|
82 int
|
c@27
|
83 OnsetDetector::getPluginVersion() const
|
c@27
|
84 {
|
c@35
|
85 return 2;
|
c@27
|
86 }
|
c@27
|
87
|
c@27
|
88 string
|
c@27
|
89 OnsetDetector::getCopyright() const
|
c@27
|
90 {
|
c@50
|
91 return "Plugin by Christian Landone, Chris Duxbury and Juan Pablo Bello. Copyright (c) 2006-2008 QMUL - All Rights Reserved";
|
c@27
|
92 }
|
c@27
|
93
|
c@27
|
94 OnsetDetector::ParameterList
|
c@27
|
95 OnsetDetector::getParameterDescriptors() const
|
c@27
|
96 {
|
c@27
|
97 ParameterList list;
|
c@27
|
98
|
c@27
|
99 ParameterDescriptor desc;
|
c@27
|
100 desc.identifier = "dftype";
|
c@27
|
101 desc.name = "Onset Detection Function Type";
|
c@27
|
102 desc.description = "Method used to calculate the onset detection function";
|
c@27
|
103 desc.minValue = 0;
|
c@31
|
104 desc.maxValue = 4;
|
c@27
|
105 desc.defaultValue = 3;
|
c@27
|
106 desc.isQuantized = true;
|
c@27
|
107 desc.quantizeStep = 1;
|
c@27
|
108 desc.valueNames.push_back("High-Frequency Content");
|
c@27
|
109 desc.valueNames.push_back("Spectral Difference");
|
c@27
|
110 desc.valueNames.push_back("Phase Deviation");
|
c@27
|
111 desc.valueNames.push_back("Complex Domain");
|
c@27
|
112 desc.valueNames.push_back("Broadband Energy Rise");
|
c@27
|
113 list.push_back(desc);
|
c@27
|
114
|
c@27
|
115 desc.identifier = "sensitivity";
|
c@27
|
116 desc.name = "Onset Detector Sensitivity";
|
c@27
|
117 desc.description = "Sensitivity of peak-picker for onset detection";
|
c@27
|
118 desc.minValue = 0;
|
c@27
|
119 desc.maxValue = 100;
|
c@27
|
120 desc.defaultValue = 50;
|
c@27
|
121 desc.isQuantized = true;
|
c@27
|
122 desc.quantizeStep = 1;
|
c@27
|
123 desc.unit = "%";
|
c@27
|
124 desc.valueNames.clear();
|
c@27
|
125 list.push_back(desc);
|
c@27
|
126
|
c@30
|
127 desc.identifier = "whiten";
|
c@30
|
128 desc.name = "Adaptive Whitening";
|
c@30
|
129 desc.description = "Normalize frequency bin magnitudes relative to recent peak levels";
|
c@30
|
130 desc.minValue = 0;
|
c@30
|
131 desc.maxValue = 1;
|
c@30
|
132 desc.defaultValue = 0;
|
c@30
|
133 desc.isQuantized = true;
|
c@30
|
134 desc.quantizeStep = 1;
|
c@30
|
135 desc.unit = "";
|
c@30
|
136 list.push_back(desc);
|
c@30
|
137
|
c@27
|
138 return list;
|
c@27
|
139 }
|
c@27
|
140
|
c@27
|
141 float
|
c@27
|
142 OnsetDetector::getParameter(std::string name) const
|
c@27
|
143 {
|
c@27
|
144 if (name == "dftype") {
|
c@27
|
145 switch (m_dfType) {
|
c@27
|
146 case DF_HFC: return 0;
|
c@27
|
147 case DF_SPECDIFF: return 1;
|
c@27
|
148 case DF_PHASEDEV: return 2;
|
c@27
|
149 default: case DF_COMPLEXSD: return 3;
|
c@27
|
150 case DF_BROADBAND: return 4;
|
c@27
|
151 }
|
c@27
|
152 } else if (name == "sensitivity") {
|
c@27
|
153 return m_sensitivity;
|
c@30
|
154 } else if (name == "whiten") {
|
c@30
|
155 return m_whiten ? 1.0 : 0.0;
|
c@27
|
156 }
|
c@27
|
157 return 0.0;
|
c@27
|
158 }
|
c@27
|
159
|
c@27
|
160 void
|
c@27
|
161 OnsetDetector::setParameter(std::string name, float value)
|
c@27
|
162 {
|
c@27
|
163 if (name == "dftype") {
|
c@30
|
164 int dfType = m_dfType;
|
c@27
|
165 switch (lrintf(value)) {
|
c@30
|
166 case 0: dfType = DF_HFC; break;
|
c@30
|
167 case 1: dfType = DF_SPECDIFF; break;
|
c@30
|
168 case 2: dfType = DF_PHASEDEV; break;
|
c@30
|
169 default: case 3: dfType = DF_COMPLEXSD; break;
|
c@30
|
170 case 4: dfType = DF_BROADBAND; break;
|
c@27
|
171 }
|
c@30
|
172 if (dfType == m_dfType) return;
|
c@30
|
173 m_dfType = dfType;
|
c@30
|
174 m_program = "";
|
c@27
|
175 } else if (name == "sensitivity") {
|
c@30
|
176 if (m_sensitivity == value) return;
|
c@27
|
177 m_sensitivity = value;
|
c@30
|
178 m_program = "";
|
c@30
|
179 } else if (name == "whiten") {
|
c@30
|
180 if (m_whiten == (value > 0.5)) return;
|
c@30
|
181 m_whiten = (value > 0.5);
|
c@30
|
182 m_program = "";
|
c@27
|
183 }
|
c@27
|
184 }
|
c@27
|
185
|
c@29
|
186 OnsetDetector::ProgramList
|
c@29
|
187 OnsetDetector::getPrograms() const
|
c@29
|
188 {
|
c@29
|
189 ProgramList programs;
|
c@30
|
190 programs.push_back("");
|
c@29
|
191 programs.push_back("General purpose");
|
c@29
|
192 programs.push_back("Soft onsets");
|
c@29
|
193 programs.push_back("Percussive onsets");
|
c@29
|
194 return programs;
|
c@29
|
195 }
|
c@29
|
196
|
c@29
|
197 std::string
|
c@29
|
198 OnsetDetector::getCurrentProgram() const
|
c@29
|
199 {
|
c@30
|
200 if (m_program == "") return "";
|
c@29
|
201 else return m_program;
|
c@29
|
202 }
|
c@29
|
203
|
c@29
|
204 void
|
c@29
|
205 OnsetDetector::selectProgram(std::string program)
|
c@29
|
206 {
|
c@29
|
207 if (program == "General purpose") {
|
c@29
|
208 setParameter("dftype", 3); // complex
|
c@29
|
209 setParameter("sensitivity", 50);
|
c@30
|
210 setParameter("whiten", 0);
|
c@29
|
211 } else if (program == "Soft onsets") {
|
c@31
|
212 setParameter("dftype", 3); // complex
|
c@31
|
213 setParameter("sensitivity", 40);
|
c@31
|
214 setParameter("whiten", 1);
|
c@29
|
215 } else if (program == "Percussive onsets") {
|
c@29
|
216 setParameter("dftype", 4); // broadband energy rise
|
c@29
|
217 setParameter("sensitivity", 40);
|
c@30
|
218 setParameter("whiten", 0);
|
c@29
|
219 } else {
|
c@29
|
220 return;
|
c@29
|
221 }
|
c@29
|
222 m_program = program;
|
c@29
|
223 }
|
c@29
|
224
|
c@27
|
225 bool
|
c@27
|
226 OnsetDetector::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
c@27
|
227 {
|
c@27
|
228 if (m_d) {
|
c@27
|
229 delete m_d;
|
c@27
|
230 m_d = 0;
|
c@27
|
231 }
|
c@27
|
232
|
c@27
|
233 if (channels < getMinChannelCount() ||
|
c@27
|
234 channels > getMaxChannelCount()) {
|
c@27
|
235 std::cerr << "OnsetDetector::initialise: Unsupported channel count: "
|
c@27
|
236 << channels << std::endl;
|
c@27
|
237 return false;
|
c@27
|
238 }
|
c@27
|
239
|
c@28
|
240 if (stepSize != getPreferredStepSize()) {
|
c@32
|
241 std::cerr << "WARNING: OnsetDetector::initialise: Possibly sub-optimal step size for this sample rate: "
|
c@28
|
242 << stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
|
c@27
|
243 }
|
c@27
|
244
|
c@28
|
245 if (blockSize != getPreferredBlockSize()) {
|
c@32
|
246 std::cerr << "WARNING: OnsetDetector::initialise: Possibly sub-optimal block size for this sample rate: "
|
c@28
|
247 << blockSize << " (wanted " << (getPreferredBlockSize()) << ")" << std::endl;
|
c@27
|
248 }
|
c@27
|
249
|
c@27
|
250 DFConfig dfConfig;
|
c@27
|
251 dfConfig.DFType = m_dfType;
|
c@27
|
252 dfConfig.stepSecs = float(stepSize) / m_inputSampleRate;
|
c@27
|
253 dfConfig.stepSize = stepSize;
|
c@27
|
254 dfConfig.frameLength = blockSize;
|
c@27
|
255 dfConfig.dbRise = 6.0 - m_sensitivity / 16.6667;
|
c@30
|
256 dfConfig.adaptiveWhitening = m_whiten;
|
c@30
|
257 dfConfig.whiteningRelaxCoeff = -1;
|
c@30
|
258 dfConfig.whiteningFloor = -1;
|
c@27
|
259
|
c@27
|
260 m_d = new OnsetDetectorData(dfConfig);
|
c@27
|
261 return true;
|
c@27
|
262 }
|
c@27
|
263
|
c@27
|
264 void
|
c@27
|
265 OnsetDetector::reset()
|
c@27
|
266 {
|
c@27
|
267 if (m_d) m_d->reset();
|
c@27
|
268 }
|
c@27
|
269
|
c@27
|
270 size_t
|
c@27
|
271 OnsetDetector::getPreferredStepSize() const
|
c@27
|
272 {
|
c@32
|
273 size_t step = size_t(m_inputSampleRate * m_preferredStepSecs + 0.0001);
|
c@27
|
274 // std::cerr << "OnsetDetector::getPreferredStepSize: input sample rate is " << m_inputSampleRate << ", step size is " << step << std::endl;
|
c@27
|
275 return step;
|
c@27
|
276 }
|
c@27
|
277
|
c@27
|
278 size_t
|
c@27
|
279 OnsetDetector::getPreferredBlockSize() const
|
c@27
|
280 {
|
c@27
|
281 return getPreferredStepSize() * 2;
|
c@27
|
282 }
|
c@27
|
283
|
c@27
|
284 OnsetDetector::OutputList
|
c@27
|
285 OnsetDetector::getOutputDescriptors() const
|
c@27
|
286 {
|
c@27
|
287 OutputList list;
|
c@27
|
288
|
c@32
|
289 float stepSecs = m_preferredStepSecs;
|
c@32
|
290 if (m_d) stepSecs = m_d->dfConfig.stepSecs;
|
c@32
|
291
|
c@27
|
292 OutputDescriptor onsets;
|
c@27
|
293 onsets.identifier = "onsets";
|
c@27
|
294 onsets.name = "Note Onsets";
|
c@27
|
295 onsets.description = "Perceived note onset positions";
|
c@27
|
296 onsets.unit = "";
|
c@27
|
297 onsets.hasFixedBinCount = true;
|
c@27
|
298 onsets.binCount = 0;
|
c@27
|
299 onsets.sampleType = OutputDescriptor::VariableSampleRate;
|
c@32
|
300 onsets.sampleRate = 1.0 / stepSecs;
|
c@27
|
301
|
c@27
|
302 OutputDescriptor df;
|
c@27
|
303 df.identifier = "detection_fn";
|
c@27
|
304 df.name = "Onset Detection Function";
|
c@27
|
305 df.description = "Probability function of note onset likelihood";
|
c@27
|
306 df.unit = "";
|
c@27
|
307 df.hasFixedBinCount = true;
|
c@27
|
308 df.binCount = 1;
|
c@27
|
309 df.hasKnownExtents = false;
|
c@27
|
310 df.isQuantized = false;
|
c@27
|
311 df.sampleType = OutputDescriptor::OneSamplePerStep;
|
c@27
|
312
|
c@27
|
313 OutputDescriptor sdf;
|
c@27
|
314 sdf.identifier = "smoothed_df";
|
c@27
|
315 sdf.name = "Smoothed Detection Function";
|
c@27
|
316 sdf.description = "Smoothed probability function used for peak-picking";
|
c@27
|
317 sdf.unit = "";
|
c@27
|
318 sdf.hasFixedBinCount = true;
|
c@27
|
319 sdf.binCount = 1;
|
c@27
|
320 sdf.hasKnownExtents = false;
|
c@27
|
321 sdf.isQuantized = false;
|
c@27
|
322
|
c@27
|
323 sdf.sampleType = OutputDescriptor::VariableSampleRate;
|
c@27
|
324
|
c@27
|
325 //!!! SV doesn't seem to handle these correctly in getRemainingFeatures
|
c@27
|
326 // sdf.sampleType = OutputDescriptor::FixedSampleRate;
|
c@32
|
327 sdf.sampleRate = 1.0 / stepSecs;
|
c@27
|
328
|
c@27
|
329 list.push_back(onsets);
|
c@27
|
330 list.push_back(df);
|
c@27
|
331 list.push_back(sdf);
|
c@27
|
332
|
c@27
|
333 return list;
|
c@27
|
334 }
|
c@27
|
335
|
c@27
|
336 OnsetDetector::FeatureSet
|
c@27
|
337 OnsetDetector::process(const float *const *inputBuffers,
|
c@29
|
338 Vamp::RealTime timestamp)
|
c@27
|
339 {
|
c@27
|
340 if (!m_d) {
|
c@27
|
341 cerr << "ERROR: OnsetDetector::process: "
|
c@27
|
342 << "OnsetDetector has not been initialised"
|
c@27
|
343 << endl;
|
c@27
|
344 return FeatureSet();
|
c@27
|
345 }
|
c@27
|
346
|
c@27
|
347 size_t len = m_d->dfConfig.frameLength / 2;
|
c@27
|
348
|
c@29
|
349 // float mean = 0.f;
|
c@29
|
350 // for (size_t i = 0; i < len; ++i) {
|
c@29
|
351 //// std::cerr << inputBuffers[0][i] << " ";
|
c@29
|
352 // mean += inputBuffers[0][i];
|
c@29
|
353 // }
|
c@29
|
354 //// std::cerr << std::endl;
|
c@29
|
355 // mean /= len;
|
c@29
|
356
|
c@29
|
357 // std::cerr << "OnsetDetector::process(" << timestamp << "): "
|
c@29
|
358 // << "dftype " << m_dfType << ", sens " << m_sensitivity
|
c@29
|
359 // << ", len " << len << ", mean " << mean << std::endl;
|
c@29
|
360
|
c@27
|
361 double *magnitudes = new double[len];
|
c@27
|
362 double *phases = new double[len];
|
c@27
|
363
|
c@27
|
364 // We only support a single input channel
|
c@27
|
365
|
c@27
|
366 for (size_t i = 0; i < len; ++i) {
|
c@27
|
367
|
c@27
|
368 magnitudes[i] = sqrt(inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] +
|
c@27
|
369 inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]);
|
c@27
|
370
|
c@27
|
371 phases[i] = atan2(-inputBuffers[0][i*2+1], inputBuffers[0][i*2]);
|
c@27
|
372 }
|
c@27
|
373
|
c@27
|
374 double output = m_d->df->process(magnitudes, phases);
|
c@27
|
375
|
c@27
|
376 delete[] magnitudes;
|
c@27
|
377 delete[] phases;
|
c@27
|
378
|
c@27
|
379 m_d->dfOutput.push_back(output);
|
c@27
|
380
|
c@27
|
381 FeatureSet returnFeatures;
|
c@27
|
382
|
c@27
|
383 Feature feature;
|
c@27
|
384 feature.hasTimestamp = false;
|
c@27
|
385 feature.values.push_back(output);
|
c@27
|
386
|
c@29
|
387 // std::cerr << "df: " << output << std::endl;
|
c@29
|
388
|
c@27
|
389 returnFeatures[1].push_back(feature); // detection function is output 1
|
c@27
|
390 return returnFeatures;
|
c@27
|
391 }
|
c@27
|
392
|
c@27
|
393 OnsetDetector::FeatureSet
|
c@27
|
394 OnsetDetector::getRemainingFeatures()
|
c@27
|
395 {
|
c@27
|
396 if (!m_d) {
|
c@27
|
397 cerr << "ERROR: OnsetDetector::getRemainingFeatures: "
|
c@27
|
398 << "OnsetDetector has not been initialised"
|
c@27
|
399 << endl;
|
c@27
|
400 return FeatureSet();
|
c@27
|
401 }
|
c@27
|
402
|
c@27
|
403 if (m_dfType == DF_BROADBAND) {
|
c@27
|
404 for (size_t i = 0; i < m_d->dfOutput.size(); ++i) {
|
c@27
|
405 if (m_d->dfOutput[i] < ((110 - m_sensitivity) *
|
c@27
|
406 m_d->dfConfig.frameLength) / 200) {
|
c@27
|
407 m_d->dfOutput[i] = 0;
|
c@27
|
408 }
|
c@27
|
409 }
|
c@27
|
410 }
|
c@27
|
411
|
c@27
|
412 double aCoeffs[] = { 1.0000, -0.5949, 0.2348 };
|
c@27
|
413 double bCoeffs[] = { 0.1600, 0.3200, 0.1600 };
|
c@27
|
414
|
c@27
|
415 FeatureSet returnFeatures;
|
c@27
|
416
|
c@27
|
417 PPickParams ppParams;
|
c@27
|
418 ppParams.length = m_d->dfOutput.size();
|
c@27
|
419 // tau and cutoff appear to be unused in PeakPicking, but I've
|
c@27
|
420 // inserted some moderately plausible values rather than leave
|
c@27
|
421 // them unset. The QuadThresh values come from trial and error.
|
c@27
|
422 // The rest of these are copied from ttParams in the BeatTracker
|
c@27
|
423 // code: I don't claim to know whether they're good or not --cc
|
c@27
|
424 ppParams.tau = m_d->dfConfig.stepSize / m_inputSampleRate;
|
c@27
|
425 ppParams.alpha = 9;
|
c@27
|
426 ppParams.cutoff = m_inputSampleRate/4;
|
c@27
|
427 ppParams.LPOrd = 2;
|
c@27
|
428 ppParams.LPACoeffs = aCoeffs;
|
c@27
|
429 ppParams.LPBCoeffs = bCoeffs;
|
c@27
|
430 ppParams.WinT.post = 8;
|
c@27
|
431 ppParams.WinT.pre = 7;
|
c@27
|
432 ppParams.QuadThresh.a = (100 - m_sensitivity) / 1000.0;
|
c@27
|
433 ppParams.QuadThresh.b = 0;
|
c@27
|
434 ppParams.QuadThresh.c = (100 - m_sensitivity) / 1500.0;
|
c@27
|
435
|
c@27
|
436 PeakPicking peakPicker(ppParams);
|
c@27
|
437
|
c@27
|
438 double *ppSrc = new double[ppParams.length];
|
c@27
|
439 for (unsigned int i = 0; i < ppParams.length; ++i) {
|
c@27
|
440 ppSrc[i] = m_d->dfOutput[i];
|
c@27
|
441 }
|
c@27
|
442
|
c@27
|
443 vector<int> onsets;
|
c@27
|
444 peakPicker.process(ppSrc, ppParams.length, onsets);
|
c@27
|
445
|
c@27
|
446 for (size_t i = 0; i < onsets.size(); ++i) {
|
c@27
|
447
|
c@27
|
448 size_t index = onsets[i];
|
c@27
|
449
|
c@27
|
450 if (m_dfType != DF_BROADBAND) {
|
c@27
|
451 double prevDiff = 0.0;
|
c@27
|
452 while (index > 1) {
|
c@27
|
453 double diff = ppSrc[index] - ppSrc[index-1];
|
c@27
|
454 if (diff < prevDiff * 0.9) break;
|
c@27
|
455 prevDiff = diff;
|
c@27
|
456 --index;
|
c@27
|
457 }
|
c@27
|
458 }
|
c@27
|
459
|
c@27
|
460 size_t frame = index * m_d->dfConfig.stepSize;
|
c@27
|
461
|
c@27
|
462 Feature feature;
|
c@27
|
463 feature.hasTimestamp = true;
|
c@27
|
464 feature.timestamp = Vamp::RealTime::frame2RealTime
|
c@27
|
465 (frame, lrintf(m_inputSampleRate));
|
c@27
|
466
|
c@27
|
467 returnFeatures[0].push_back(feature); // onsets are output 0
|
c@27
|
468 }
|
c@27
|
469
|
c@30
|
470 for (unsigned int i = 0; i < ppParams.length; ++i) {
|
c@27
|
471
|
c@27
|
472 Feature feature;
|
c@27
|
473 // feature.hasTimestamp = false;
|
c@27
|
474 feature.hasTimestamp = true;
|
c@27
|
475 size_t frame = i * m_d->dfConfig.stepSize;
|
c@27
|
476 feature.timestamp = Vamp::RealTime::frame2RealTime
|
c@27
|
477 (frame, lrintf(m_inputSampleRate));
|
c@27
|
478
|
c@27
|
479 feature.values.push_back(ppSrc[i]);
|
c@27
|
480 returnFeatures[2].push_back(feature); // smoothed df is output 2
|
c@27
|
481 }
|
c@27
|
482
|
c@27
|
483 return returnFeatures;
|
c@27
|
484 }
|
c@27
|
485
|