c@243
|
1 /*
|
c@243
|
2 * cluster_segmenter.c
|
c@243
|
3 * soundbite
|
c@243
|
4 *
|
c@243
|
5 * Created by Mark Levy on 06/04/2006.
|
c@309
|
6 * Copyright 2006 Centre for Digital Music, Queen Mary, University of London.
|
c@309
|
7
|
cannam@480
|
8 This program is free software; you can redistribute it and/or
|
cannam@480
|
9 modify it under the terms of the GNU General Public License as
|
cannam@480
|
10 published by the Free Software Foundation; either version 2 of the
|
cannam@480
|
11 License, or (at your option) any later version. See the file
|
cannam@480
|
12 COPYING included with this distribution for more information.
|
c@243
|
13 *
|
c@243
|
14 */
|
c@243
|
15
|
c@243
|
16 #include "cluster_segmenter.h"
|
c@243
|
17
|
c@243
|
18 extern int readmatarray_size(const char *filepath, int n_array, int* t, int* d);
|
c@243
|
19 extern int readmatarray(const char *filepath, int n_array, int t, int d, double** arr);
|
c@243
|
20
|
c@243
|
21 /* converts constant-Q features to normalised chroma */
|
c@243
|
22 void cq2chroma(double** cq, int nframes, int ncoeff, int bins, double** chroma)
|
c@243
|
23 {
|
cannam@480
|
24 int noct = ncoeff / bins; /* number of complete octaves in constant-Q */
|
cannam@480
|
25 int t, b, oct, ix;
|
cannam@480
|
26
|
cannam@480
|
27 for (t = 0; t < nframes; t++) {
|
cannam@480
|
28 for (b = 0; b < bins; b++) {
|
cannam@480
|
29 chroma[t][b] = 0;
|
cannam@480
|
30 }
|
cannam@480
|
31 for (oct = 0; oct < noct; oct++) {
|
cannam@480
|
32 ix = oct * bins;
|
cannam@480
|
33 for (b = 0; b < bins; b++) {
|
cannam@480
|
34 chroma[t][b] += fabs(cq[t][ix+b]);
|
cannam@480
|
35 }
|
cannam@480
|
36 }
|
cannam@480
|
37 }
|
c@243
|
38 }
|
c@243
|
39
|
c@243
|
40 /* applies MPEG-7 normalisation to constant-Q features, storing normalised envelope (norm) in last feature dimension */
|
c@243
|
41 void mpeg7_constq(double** features, int nframes, int ncoeff)
|
c@243
|
42 {
|
cannam@480
|
43 int i, j;
|
cannam@480
|
44 double ss;
|
cannam@480
|
45 double env;
|
cannam@480
|
46 double maxenv = 0;
|
cannam@480
|
47
|
cannam@480
|
48 /* convert const-Q features to dB scale */
|
cannam@480
|
49 for (i = 0; i < nframes; i++) {
|
cannam@480
|
50 for (j = 0; j < ncoeff; j++) {
|
cannam@480
|
51 features[i][j] = 10.0 * log10(features[i][j]+DBL_EPSILON);
|
cannam@480
|
52 }
|
cannam@480
|
53 }
|
cannam@480
|
54
|
cannam@480
|
55 /* normalise each feature vector and add the norm as an extra feature dimension */
|
cannam@480
|
56 for (i = 0; i < nframes; i++) {
|
cannam@480
|
57 ss = 0;
|
cannam@480
|
58 for (j = 0; j < ncoeff; j++) {
|
cannam@480
|
59 ss += features[i][j] * features[i][j];
|
cannam@480
|
60 }
|
cannam@480
|
61 env = sqrt(ss);
|
cannam@480
|
62 for (j = 0; j < ncoeff; j++) {
|
cannam@480
|
63 features[i][j] /= env;
|
cannam@480
|
64 }
|
cannam@480
|
65 features[i][ncoeff] = env;
|
cannam@480
|
66 if (env > maxenv) {
|
cannam@480
|
67 maxenv = env;
|
cannam@480
|
68 }
|
cannam@480
|
69 }
|
cannam@480
|
70 /* normalise the envelopes */
|
cannam@480
|
71 for (i = 0; i < nframes; i++) {
|
cannam@480
|
72 features[i][ncoeff] /= maxenv;
|
cannam@480
|
73 }
|
c@243
|
74 }
|
c@243
|
75
|
c@243
|
76 /* return histograms h[nx*m] of data x[nx] into m bins using a sliding window of length h_len (MUST BE ODD) */
|
c@243
|
77 /* NB h is a vector in row major order, as required by cluster_melt() */
|
c@243
|
78 /* for historical reasons we normalise the histograms by their norm (not to sum to one) */
|
c@243
|
79 void create_histograms(int* x, int nx, int m, int hlen, double* h)
|
c@243
|
80 {
|
cannam@480
|
81 int i, j, t;
|
cannam@480
|
82 double norm;
|
c@266
|
83
|
cannam@480
|
84 for (i = 0; i < nx*m; i++) {
|
cannam@480
|
85 h[i] = 0;
|
cannam@480
|
86 }
|
c@266
|
87
|
cannam@480
|
88 for (i = hlen/2; i < nx-hlen/2; i++) {
|
cannam@480
|
89 for (j = 0; j < m; j++) {
|
cannam@480
|
90 h[i*m+j] = 0;
|
cannam@480
|
91 }
|
cannam@480
|
92 for (t = i-hlen/2; t <= i+hlen/2; t++) {
|
cannam@480
|
93 ++h[i*m+x[t]];
|
cannam@480
|
94 }
|
cannam@480
|
95 norm = 0;
|
cannam@480
|
96 for (j = 0; j < m; j++) {
|
cannam@480
|
97 norm += h[i*m+j] * h[i*m+j];
|
cannam@480
|
98 }
|
cannam@480
|
99 for (j = 0; j < m; j++) {
|
cannam@480
|
100 h[i*m+j] /= norm;
|
cannam@480
|
101 }
|
cannam@480
|
102 }
|
cannam@480
|
103
|
cannam@480
|
104 /* duplicate histograms at beginning and end to create one histogram for each data value supplied */
|
cannam@480
|
105 for (i = 0; i < hlen/2; i++) {
|
cannam@480
|
106 for (j = 0; j < m; j++) {
|
cannam@480
|
107 h[i*m+j] = h[hlen/2*m+j];
|
cannam@480
|
108 }
|
cannam@480
|
109 }
|
cannam@480
|
110 for (i = nx-hlen/2; i < nx; i++) {
|
cannam@480
|
111 for (j = 0; j < m; j++) {
|
cannam@480
|
112 h[i*m+j] = h[(nx-hlen/2-1)*m+j];
|
cannam@480
|
113 }
|
cannam@480
|
114 }
|
c@243
|
115 }
|
c@243
|
116
|
c@243
|
117 /* segment using HMM and then histogram clustering */
|
c@243
|
118 void cluster_segment(int* q, double** features, int frames_read, int feature_length, int nHMM_states,
|
cannam@480
|
119 int histogram_length, int nclusters, int neighbour_limit)
|
c@243
|
120 {
|
cannam@480
|
121 int i, j;
|
cannam@480
|
122
|
cannam@480
|
123 /*****************************/
|
cannam@480
|
124 if (0) {
|
cannam@480
|
125 /* try just using the predominant bin number as a 'decoded state' */
|
cannam@480
|
126 nHMM_states = feature_length + 1; /* allow a 'zero' state */
|
cannam@480
|
127 double chroma_thresh = 0.05;
|
cannam@480
|
128 double maxval;
|
cannam@480
|
129 int maxbin;
|
cannam@480
|
130 for (i = 0; i < frames_read; i++) {
|
cannam@480
|
131 maxval = 0;
|
cannam@480
|
132 for (j = 0; j < feature_length; j++) {
|
cannam@480
|
133 if (features[i][j] > maxval) {
|
cannam@480
|
134 maxval = features[i][j];
|
cannam@480
|
135 maxbin = j;
|
cannam@480
|
136 }
|
cannam@480
|
137 }
|
cannam@480
|
138 if (maxval > chroma_thresh) {
|
cannam@480
|
139 q[i] = maxbin;
|
cannam@480
|
140 } else {
|
cannam@480
|
141 q[i] = feature_length;
|
cannam@480
|
142 }
|
cannam@480
|
143 }
|
cannam@480
|
144
|
cannam@480
|
145 }
|
cannam@480
|
146 if (1) {
|
cannam@480
|
147 /*****************************/
|
cannam@480
|
148
|
cannam@480
|
149 /* scale all the features to 'balance covariances' during HMM training */
|
cannam@480
|
150 double scale = 10;
|
cannam@480
|
151 for (i = 0; i < frames_read; i++)
|
cannam@480
|
152 for (j = 0; j < feature_length; j++)
|
cannam@480
|
153 features[i][j] *= scale;
|
cannam@480
|
154
|
cannam@480
|
155 /* train an HMM on the features */
|
cannam@480
|
156
|
cannam@480
|
157 /* create a model */
|
cannam@480
|
158 model_t* model = hmm_init(features, frames_read, feature_length, nHMM_states);
|
cannam@480
|
159
|
cannam@480
|
160 /* train the model */
|
cannam@480
|
161 hmm_train(features, frames_read, model);
|
cannam@480
|
162 /*
|
cannam@480
|
163 printf("\n\nafter training:\n");
|
cannam@480
|
164 hmm_print(model);
|
cannam@480
|
165 */
|
cannam@480
|
166 /* decode the hidden state sequence */
|
cannam@480
|
167 viterbi_decode(features, frames_read, model, q);
|
cannam@480
|
168 hmm_close(model);
|
cannam@480
|
169
|
cannam@480
|
170 /*****************************/
|
cannam@480
|
171 }
|
cannam@480
|
172 /*****************************/
|
c@243
|
173
|
c@283
|
174 /*
|
cannam@480
|
175 fprintf(stderr, "HMM state sequence:\n");
|
cannam@480
|
176 for (i = 0; i < frames_read; i++)
|
cannam@480
|
177 fprintf(stderr, "%d ", q[i]);
|
cannam@480
|
178 fprintf(stderr, "\n\n");
|
c@283
|
179 */
|
cannam@480
|
180
|
cannam@480
|
181 /* create histograms of states */
|
cannam@480
|
182 double* h = (double*) malloc(frames_read*nHMM_states*sizeof(double)); /* vector in row major order */
|
cannam@480
|
183 create_histograms(q, frames_read, nHMM_states, histogram_length, h);
|
cannam@480
|
184
|
cannam@480
|
185 /* cluster the histograms */
|
cannam@480
|
186 int nbsched = 20; /* length of inverse temperature schedule */
|
cannam@480
|
187 double* bsched = (double*) malloc(nbsched*sizeof(double)); /* inverse temperature schedule */
|
cannam@480
|
188 double b0 = 100;
|
cannam@480
|
189 double alpha = 0.7;
|
cannam@480
|
190 bsched[0] = b0;
|
cannam@480
|
191 for (i = 1; i < nbsched; i++) {
|
cannam@480
|
192 bsched[i] = alpha * bsched[i-1];
|
cannam@480
|
193 }
|
cannam@480
|
194 cluster_melt(h, nHMM_states, frames_read, bsched, nbsched, nclusters, neighbour_limit, q);
|
cannam@480
|
195
|
cannam@480
|
196 /* now q holds a sequence of cluster assignments */
|
cannam@480
|
197
|
cannam@480
|
198 free(h);
|
cannam@480
|
199 free(bsched);
|
c@243
|
200 }
|
c@243
|
201
|
c@243
|
202 /* segment constant-Q or chroma features */
|
c@243
|
203 void constq_segment(int* q, double** features, int frames_read, int bins, int ncoeff, int feature_type,
|
cannam@480
|
204 int nHMM_states, int histogram_length, int nclusters, int neighbour_limit)
|
c@243
|
205 {
|
cannam@480
|
206 int feature_length;
|
cannam@480
|
207 double** chroma;
|
cannam@480
|
208 int i;
|
cannam@480
|
209
|
cannam@480
|
210 if (feature_type == FEATURE_TYPE_CONSTQ) {
|
cannam@480
|
211
|
cannam@480
|
212 mpeg7_constq(features, frames_read, ncoeff);
|
cannam@480
|
213
|
cannam@480
|
214 /* do PCA on the features (but not the envelope) */
|
cannam@480
|
215 int ncomponents = 20;
|
cannam@480
|
216 pca_project(features, frames_read, ncoeff, ncomponents);
|
cannam@480
|
217
|
cannam@480
|
218 /* copy the envelope so that it immediatly follows the chosen components */
|
cannam@480
|
219 for (i = 0; i < frames_read; i++) {
|
cannam@480
|
220 features[i][ncomponents] = features[i][ncoeff];
|
cannam@480
|
221 }
|
cannam@480
|
222
|
cannam@480
|
223 feature_length = ncomponents + 1;
|
cannam@480
|
224
|
cannam@480
|
225 cluster_segment(q, features, frames_read, feature_length,
|
cannam@480
|
226 nHMM_states, histogram_length, nclusters,
|
cannam@480
|
227 neighbour_limit);
|
cannam@480
|
228 }
|
cannam@480
|
229
|
cannam@480
|
230 if (feature_type == FEATURE_TYPE_CHROMA) {
|
cannam@480
|
231
|
cannam@480
|
232 /* convert constant-Q to normalised chroma features */
|
cannam@480
|
233 chroma = (double**) malloc(frames_read*sizeof(double*));
|
cannam@480
|
234 for (i = 0; i < frames_read; i++) {
|
cannam@480
|
235 chroma[i] = (double*) malloc(bins*sizeof(double));
|
cannam@480
|
236 }
|
cannam@480
|
237
|
cannam@480
|
238 cq2chroma(features, frames_read, ncoeff, bins, chroma);
|
cannam@480
|
239
|
cannam@480
|
240 feature_length = bins;
|
cannam@480
|
241
|
cannam@480
|
242 cluster_segment(q, chroma, frames_read, feature_length,
|
cannam@480
|
243 nHMM_states, histogram_length, nclusters,
|
cannam@480
|
244 neighbour_limit);
|
cannam@480
|
245
|
cannam@480
|
246 for (i = 0; i < frames_read; i++)
|
cannam@480
|
247 free(chroma[i]);
|
cannam@480
|
248 free(chroma);
|
cannam@480
|
249 }
|
c@243
|
250 }
|
c@243
|
251
|
c@243
|
252
|
c@243
|
253
|