annotate dsp/segmentation/cluster_segmenter.c @ 266:7d3e12411596

* Avoid uninitialised values in histogram when running with (pathologically?) small frame count
author Chris Cannam <c.cannam@qmul.ac.uk>
date Fri, 01 Feb 2008 16:46:29 +0000
parents cdfd0948a852
children d72fcd34d9a7
rev   line source
c@243 1 /*
c@243 2 * cluster_segmenter.c
c@243 3 * soundbite
c@243 4 *
c@243 5 * Created by Mark Levy on 06/04/2006.
c@243 6 * Copyright 2006 Centre for Digital Music, Queen Mary, University of London. All rights reserved.
c@243 7 *
c@243 8 */
c@243 9
c@243 10 #include "cluster_segmenter.h"
c@243 11
c@243 12 extern int readmatarray_size(const char *filepath, int n_array, int* t, int* d);
c@243 13 extern int readmatarray(const char *filepath, int n_array, int t, int d, double** arr);
c@243 14
c@243 15 /* converts constant-Q features to normalised chroma */
c@243 16 void cq2chroma(double** cq, int nframes, int ncoeff, int bins, double** chroma)
c@243 17 {
c@243 18 int noct = ncoeff / bins; /* number of complete octaves in constant-Q */
c@243 19 int t, b, oct, ix;
c@243 20 //double maxchroma; /* max chroma value at each time, for normalisation */
c@243 21 //double sum; /* for normalisation */
c@243 22
c@243 23 for (t = 0; t < nframes; t++)
c@243 24 {
c@243 25 for (b = 0; b < bins; b++)
c@243 26 chroma[t][b] = 0;
c@243 27 for (oct = 0; oct < noct; oct++)
c@243 28 {
c@243 29 ix = oct * bins;
c@243 30 for (b = 0; b < bins; b++)
c@243 31 chroma[t][b] += fabs(cq[t][ix+b]);
c@243 32 }
c@243 33 /* normalise to unit sum
c@243 34 sum = 0;
c@243 35 for (b = 0; b < bins; b++)
c@243 36 sum += chroma[t][b];
c@243 37 for (b = 0; b < bins; b++)
c@243 38 chroma[t][b] /= sum;
c@245 39 */
c@243 40 /* normalise to unit max - NO this made results much worse!
c@243 41 maxchroma = 0;
c@243 42 for (b = 0; b < bins; b++)
c@243 43 if (chroma[t][b] > maxchroma)
c@243 44 maxchroma = chroma[t][b];
c@243 45 if (maxchroma > 0)
c@243 46 for (b = 0; b < bins; b++)
c@243 47 chroma[t][b] /= maxchroma;
c@243 48 */
c@243 49 }
c@243 50 }
c@243 51
c@243 52 /* applies MPEG-7 normalisation to constant-Q features, storing normalised envelope (norm) in last feature dimension */
c@243 53 void mpeg7_constq(double** features, int nframes, int ncoeff)
c@243 54 {
c@243 55 int i, j;
c@243 56 double ss;
c@243 57 double env;
c@243 58 double maxenv = 0;
c@243 59
c@243 60 /* convert const-Q features to dB scale */
c@243 61 for (i = 0; i < nframes; i++)
c@243 62 for (j = 0; j < ncoeff; j++)
c@243 63 features[i][j] = 10.0 * log10(features[i][j]+DBL_EPSILON);
c@243 64
c@243 65 /* normalise each feature vector and add the norm as an extra feature dimension */
c@243 66 for (i = 0; i < nframes; i++)
c@243 67 {
c@243 68 ss = 0;
c@243 69 for (j = 0; j < ncoeff; j++)
c@243 70 ss += features[i][j] * features[i][j];
c@243 71 env = sqrt(ss);
c@243 72 for (j = 0; j < ncoeff; j++)
c@243 73 features[i][j] /= env;
c@243 74 features[i][ncoeff] = env;
c@243 75 if (env > maxenv)
c@243 76 maxenv = env;
c@243 77 }
c@243 78 /* normalise the envelopes */
c@243 79 for (i = 0; i < nframes; i++)
c@243 80 features[i][ncoeff] /= maxenv;
c@243 81 }
c@243 82
c@243 83 /* return histograms h[nx*m] of data x[nx] into m bins using a sliding window of length h_len (MUST BE ODD) */
c@243 84 /* NB h is a vector in row major order, as required by cluster_melt() */
c@243 85 /* for historical reasons we normalise the histograms by their norm (not to sum to one) */
c@243 86 void create_histograms(int* x, int nx, int m, int hlen, double* h)
c@243 87 {
c@243 88 int i, j, t;
c@243 89 double norm;
c@266 90
c@266 91 for (i = 0; i < nx*m; i++)
c@266 92 h[i] = 0;
c@266 93
c@243 94 for (i = hlen/2; i < nx-hlen/2; i++)
c@243 95 {
c@243 96 for (j = 0; j < m; j++)
c@243 97 h[i*m+j] = 0;
c@243 98 for (t = i-hlen/2; t <= i+hlen/2; t++)
c@243 99 ++h[i*m+x[t]];
c@243 100 norm = 0;
c@243 101 for (j = 0; j < m; j++)
c@243 102 norm += h[i*m+j] * h[i*m+j];
c@243 103 for (j = 0; j < m; j++)
c@243 104 h[i*m+j] /= norm;
c@243 105 }
c@243 106
c@243 107 /* duplicate histograms at beginning and end to create one histogram for each data value supplied */
c@243 108 for (i = 0; i < hlen/2; i++)
c@243 109 for (j = 0; j < m; j++)
c@243 110 h[i*m+j] = h[hlen/2*m+j];
c@243 111 for (i = nx-hlen/2; i < nx; i++)
c@243 112 for (j = 0; j < m; j++)
c@243 113 h[i*m+j] = h[(nx-hlen/2-1)*m+j];
c@243 114 }
c@243 115
c@243 116 /* segment using HMM and then histogram clustering */
c@243 117 void cluster_segment(int* q, double** features, int frames_read, int feature_length, int nHMM_states,
c@243 118 int histogram_length, int nclusters, int neighbour_limit)
c@243 119 {
c@243 120 int i, j;
c@243 121
c@243 122 /*****************************/
c@243 123 if (0) {
c@243 124 /* try just using the predominant bin number as a 'decoded state' */
c@243 125 nHMM_states = feature_length + 1; /* allow a 'zero' state */
c@243 126 double chroma_thresh = 0.05;
c@243 127 double maxval;
c@243 128 int maxbin;
c@243 129 for (i = 0; i < frames_read; i++)
c@243 130 {
c@243 131 maxval = 0;
c@243 132 for (j = 0; j < feature_length; j++)
c@243 133 {
c@243 134 if (features[i][j] > maxval)
c@243 135 {
c@243 136 maxval = features[i][j];
c@243 137 maxbin = j;
c@243 138 }
c@243 139 }
c@243 140 if (maxval > chroma_thresh)
c@243 141 q[i] = maxbin;
c@243 142 else
c@243 143 q[i] = feature_length;
c@243 144 }
c@243 145
c@243 146 }
c@243 147 if (1) {
c@243 148 /*****************************/
c@243 149
c@243 150
c@243 151 /* scale all the features to 'balance covariances' during HMM training */
c@243 152 double scale = 10;
c@243 153 for (i = 0; i < frames_read; i++)
c@243 154 for (j = 0; j < feature_length; j++)
c@243 155 features[i][j] *= scale;
c@243 156
c@243 157 /* train an HMM on the features */
c@243 158
c@243 159 /* create a model */
c@243 160 model_t* model = hmm_init(features, frames_read, feature_length, nHMM_states);
c@243 161
c@243 162 /* train the model */
c@243 163 hmm_train(features, frames_read, model);
c@243 164
c@243 165 printf("\n\nafter training:\n");
c@243 166 hmm_print(model);
c@243 167
c@243 168 /* decode the hidden state sequence */
c@243 169 viterbi_decode(features, frames_read, model, q);
c@243 170 hmm_close(model);
c@243 171
c@243 172 /*****************************/
c@243 173 }
c@243 174 /*****************************/
c@243 175
c@243 176
c@243 177 fprintf(stderr, "HMM state sequence:\n");
c@243 178 for (i = 0; i < frames_read; i++)
c@243 179 fprintf(stderr, "%d ", q[i]);
c@243 180 fprintf(stderr, "\n\n");
c@243 181
c@243 182 /* create histograms of states */
c@243 183 double* h = (double*) malloc(frames_read*nHMM_states*sizeof(double)); /* vector in row major order */
c@243 184 create_histograms(q, frames_read, nHMM_states, histogram_length, h);
c@243 185
c@243 186 /* cluster the histograms */
c@243 187 int nbsched = 20; /* length of inverse temperature schedule */
c@243 188 double* bsched = (double*) malloc(nbsched*sizeof(double)); /* inverse temperature schedule */
c@243 189 double b0 = 100;
c@243 190 double alpha = 0.7;
c@243 191 bsched[0] = b0;
c@243 192 for (i = 1; i < nbsched; i++)
c@243 193 bsched[i] = alpha * bsched[i-1];
c@243 194 cluster_melt(h, nHMM_states, frames_read, bsched, nbsched, nclusters, neighbour_limit, q);
c@243 195
c@243 196 /* now q holds a sequence of cluster assignments */
c@243 197
c@243 198 free(h);
c@243 199 free(bsched);
c@243 200 }
c@243 201
c@243 202 /* segment constant-Q or chroma features */
c@243 203 void constq_segment(int* q, double** features, int frames_read, int bins, int ncoeff, int feature_type,
c@243 204 int nHMM_states, int histogram_length, int nclusters, int neighbour_limit)
c@243 205 {
c@243 206 int feature_length;
c@243 207 double** chroma;
c@243 208 int i;
c@243 209
c@243 210 if (feature_type == FEATURE_TYPE_CONSTQ)
c@243 211 {
c@243 212 fprintf(stderr, "Converting to dB and normalising...\n");
c@243 213
c@243 214 mpeg7_constq(features, frames_read, ncoeff);
c@243 215
c@243 216 fprintf(stderr, "Running PCA...\n");
c@243 217
c@243 218 /* do PCA on the features (but not the envelope) */
c@243 219 int ncomponents = 20;
c@243 220 pca_project(features, frames_read, ncoeff, ncomponents);
c@243 221
c@243 222 /* copy the envelope so that it immediatly follows the chosen components */
c@243 223 for (i = 0; i < frames_read; i++)
c@243 224 features[i][ncomponents] = features[i][ncoeff];
c@243 225
c@243 226 feature_length = ncomponents + 1;
c@243 227
c@243 228 /**************************************
c@243 229 //TEST
c@243 230 // feature file name
c@243 231 char* dir = "/Users/mark/documents/semma/audio/";
c@243 232 char* file_name = (char*) malloc((strlen(dir) + strlen(trackname) + strlen("_features_c20r8h0.2f0.6.mat") + 1)*sizeof(char));
c@243 233 strcpy(file_name, dir);
c@243 234 strcat(file_name, trackname);
c@243 235 strcat(file_name, "_features_c20r8h0.2f0.6.mat");
c@243 236
c@243 237 // get the features from Matlab from mat-file
c@243 238 int frames_in_file;
c@243 239 readmatarray_size(file_name, 2, &frames_in_file, &feature_length);
c@243 240 readmatarray(file_name, 2, frames_in_file, feature_length, features);
c@243 241 // copy final frame to ensure that we get as many as we expected
c@243 242 int missing_frames = frames_read - frames_in_file;
c@243 243 while (missing_frames > 0)
c@243 244 {
c@243 245 for (i = 0; i < feature_length; i++)
c@243 246 features[frames_read-missing_frames][i] = features[frames_read-missing_frames-1][i];
c@243 247 --missing_frames;
c@243 248 }
c@243 249
c@243 250 free(file_name);
c@243 251 ******************************************/
c@243 252
c@243 253 cluster_segment(q, features, frames_read, feature_length, nHMM_states, histogram_length, nclusters, neighbour_limit);
c@243 254 }
c@243 255
c@243 256 if (feature_type == FEATURE_TYPE_CHROMA)
c@243 257 {
c@243 258 fprintf(stderr, "Converting to chroma features...\n");
c@243 259
c@243 260 /* convert constant-Q to normalised chroma features */
c@243 261 chroma = (double**) malloc(frames_read*sizeof(double*));
c@243 262 for (i = 0; i < frames_read; i++)
c@243 263 chroma[i] = (double*) malloc(bins*sizeof(double));
c@243 264 cq2chroma(features, frames_read, ncoeff, bins, chroma);
c@243 265 feature_length = bins;
c@243 266
c@243 267 cluster_segment(q, chroma, frames_read, feature_length, nHMM_states, histogram_length, nclusters, neighbour_limit);
c@243 268
c@243 269 for (i = 0; i < frames_read; i++)
c@243 270 free(chroma[i]);
c@243 271 free(chroma);
c@243 272 }
c@243 273 }
c@243 274
c@243 275
c@243 276