c@243
|
1 /*
|
c@243
|
2 * cluster_segmenter.c
|
c@243
|
3 * soundbite
|
c@243
|
4 *
|
c@243
|
5 * Created by Mark Levy on 06/04/2006.
|
c@243
|
6 * Copyright 2006 Centre for Digital Music, Queen Mary, University of London. All rights reserved.
|
c@243
|
7 *
|
c@243
|
8 */
|
c@243
|
9
|
c@243
|
10 #include "cluster_segmenter.h"
|
c@243
|
11
|
c@243
|
12 extern int readmatarray_size(const char *filepath, int n_array, int* t, int* d);
|
c@243
|
13 extern int readmatarray(const char *filepath, int n_array, int t, int d, double** arr);
|
c@243
|
14
|
c@243
|
15 /* converts constant-Q features to normalised chroma */
|
c@243
|
16 void cq2chroma(double** cq, int nframes, int ncoeff, int bins, double** chroma)
|
c@243
|
17 {
|
c@243
|
18 int noct = ncoeff / bins; /* number of complete octaves in constant-Q */
|
c@243
|
19 int t, b, oct, ix;
|
c@243
|
20 //double maxchroma; /* max chroma value at each time, for normalisation */
|
c@243
|
21 //double sum; /* for normalisation */
|
c@243
|
22
|
c@243
|
23 for (t = 0; t < nframes; t++)
|
c@243
|
24 {
|
c@243
|
25 for (b = 0; b < bins; b++)
|
c@243
|
26 chroma[t][b] = 0;
|
c@243
|
27 for (oct = 0; oct < noct; oct++)
|
c@243
|
28 {
|
c@243
|
29 ix = oct * bins;
|
c@243
|
30 for (b = 0; b < bins; b++)
|
c@243
|
31 chroma[t][b] += fabs(cq[t][ix+b]);
|
c@243
|
32 }
|
c@243
|
33 /* normalise to unit sum
|
c@243
|
34 sum = 0;
|
c@243
|
35 for (b = 0; b < bins; b++)
|
c@243
|
36 sum += chroma[t][b];
|
c@243
|
37 for (b = 0; b < bins; b++)
|
c@243
|
38 chroma[t][b] /= sum;
|
c@243
|
39 /* normalise to unit max - NO this made results much worse!
|
c@243
|
40 maxchroma = 0;
|
c@243
|
41 for (b = 0; b < bins; b++)
|
c@243
|
42 if (chroma[t][b] > maxchroma)
|
c@243
|
43 maxchroma = chroma[t][b];
|
c@243
|
44 if (maxchroma > 0)
|
c@243
|
45 for (b = 0; b < bins; b++)
|
c@243
|
46 chroma[t][b] /= maxchroma;
|
c@243
|
47 */
|
c@243
|
48 }
|
c@243
|
49 }
|
c@243
|
50
|
c@243
|
51 /* applies MPEG-7 normalisation to constant-Q features, storing normalised envelope (norm) in last feature dimension */
|
c@243
|
52 void mpeg7_constq(double** features, int nframes, int ncoeff)
|
c@243
|
53 {
|
c@243
|
54 int i, j;
|
c@243
|
55 double ss;
|
c@243
|
56 double env;
|
c@243
|
57 double maxenv = 0;
|
c@243
|
58
|
c@243
|
59 /* convert const-Q features to dB scale */
|
c@243
|
60 for (i = 0; i < nframes; i++)
|
c@243
|
61 for (j = 0; j < ncoeff; j++)
|
c@243
|
62 features[i][j] = 10.0 * log10(features[i][j]+DBL_EPSILON);
|
c@243
|
63
|
c@243
|
64 /* normalise each feature vector and add the norm as an extra feature dimension */
|
c@243
|
65 for (i = 0; i < nframes; i++)
|
c@243
|
66 {
|
c@243
|
67 ss = 0;
|
c@243
|
68 for (j = 0; j < ncoeff; j++)
|
c@243
|
69 ss += features[i][j] * features[i][j];
|
c@243
|
70 env = sqrt(ss);
|
c@243
|
71 for (j = 0; j < ncoeff; j++)
|
c@243
|
72 features[i][j] /= env;
|
c@243
|
73 features[i][ncoeff] = env;
|
c@243
|
74 if (env > maxenv)
|
c@243
|
75 maxenv = env;
|
c@243
|
76 }
|
c@243
|
77 /* normalise the envelopes */
|
c@243
|
78 for (i = 0; i < nframes; i++)
|
c@243
|
79 features[i][ncoeff] /= maxenv;
|
c@243
|
80 }
|
c@243
|
81
|
c@243
|
82 /* return histograms h[nx*m] of data x[nx] into m bins using a sliding window of length h_len (MUST BE ODD) */
|
c@243
|
83 /* NB h is a vector in row major order, as required by cluster_melt() */
|
c@243
|
84 /* for historical reasons we normalise the histograms by their norm (not to sum to one) */
|
c@243
|
85 void create_histograms(int* x, int nx, int m, int hlen, double* h)
|
c@243
|
86 {
|
c@243
|
87 int i, j, t;
|
c@243
|
88 double norm;
|
c@243
|
89 for (i = hlen/2; i < nx-hlen/2; i++)
|
c@243
|
90 {
|
c@243
|
91 for (j = 0; j < m; j++)
|
c@243
|
92 h[i*m+j] = 0;
|
c@243
|
93 for (t = i-hlen/2; t <= i+hlen/2; t++)
|
c@243
|
94 ++h[i*m+x[t]];
|
c@243
|
95 norm = 0;
|
c@243
|
96 for (j = 0; j < m; j++)
|
c@243
|
97 norm += h[i*m+j] * h[i*m+j];
|
c@243
|
98 for (j = 0; j < m; j++)
|
c@243
|
99 h[i*m+j] /= norm;
|
c@243
|
100 }
|
c@243
|
101
|
c@243
|
102 /* duplicate histograms at beginning and end to create one histogram for each data value supplied */
|
c@243
|
103 for (i = 0; i < hlen/2; i++)
|
c@243
|
104 for (j = 0; j < m; j++)
|
c@243
|
105 h[i*m+j] = h[hlen/2*m+j];
|
c@243
|
106 for (i = nx-hlen/2; i < nx; i++)
|
c@243
|
107 for (j = 0; j < m; j++)
|
c@243
|
108 h[i*m+j] = h[(nx-hlen/2-1)*m+j];
|
c@243
|
109 }
|
c@243
|
110
|
c@243
|
111 /* segment using HMM and then histogram clustering */
|
c@243
|
112 void cluster_segment(int* q, double** features, int frames_read, int feature_length, int nHMM_states,
|
c@243
|
113 int histogram_length, int nclusters, int neighbour_limit)
|
c@243
|
114 {
|
c@243
|
115 int i, j;
|
c@243
|
116
|
c@243
|
117 /*****************************/
|
c@243
|
118 if (0) {
|
c@243
|
119 /* try just using the predominant bin number as a 'decoded state' */
|
c@243
|
120 nHMM_states = feature_length + 1; /* allow a 'zero' state */
|
c@243
|
121 double chroma_thresh = 0.05;
|
c@243
|
122 double maxval;
|
c@243
|
123 int maxbin;
|
c@243
|
124 for (i = 0; i < frames_read; i++)
|
c@243
|
125 {
|
c@243
|
126 maxval = 0;
|
c@243
|
127 for (j = 0; j < feature_length; j++)
|
c@243
|
128 {
|
c@243
|
129 if (features[i][j] > maxval)
|
c@243
|
130 {
|
c@243
|
131 maxval = features[i][j];
|
c@243
|
132 maxbin = j;
|
c@243
|
133 }
|
c@243
|
134 }
|
c@243
|
135 if (maxval > chroma_thresh)
|
c@243
|
136 q[i] = maxbin;
|
c@243
|
137 else
|
c@243
|
138 q[i] = feature_length;
|
c@243
|
139 }
|
c@243
|
140
|
c@243
|
141 }
|
c@243
|
142 if (1) {
|
c@243
|
143 /*****************************/
|
c@243
|
144
|
c@243
|
145
|
c@243
|
146 /* scale all the features to 'balance covariances' during HMM training */
|
c@243
|
147 double scale = 10;
|
c@243
|
148 for (i = 0; i < frames_read; i++)
|
c@243
|
149 for (j = 0; j < feature_length; j++)
|
c@243
|
150 features[i][j] *= scale;
|
c@243
|
151
|
c@243
|
152 /* train an HMM on the features */
|
c@243
|
153
|
c@243
|
154 /* create a model */
|
c@243
|
155 model_t* model = hmm_init(features, frames_read, feature_length, nHMM_states);
|
c@243
|
156
|
c@243
|
157 /* train the model */
|
c@243
|
158 hmm_train(features, frames_read, model);
|
c@243
|
159
|
c@243
|
160 printf("\n\nafter training:\n");
|
c@243
|
161 hmm_print(model);
|
c@243
|
162
|
c@243
|
163 /* decode the hidden state sequence */
|
c@243
|
164 viterbi_decode(features, frames_read, model, q);
|
c@243
|
165 hmm_close(model);
|
c@243
|
166
|
c@243
|
167 /*****************************/
|
c@243
|
168 }
|
c@243
|
169 /*****************************/
|
c@243
|
170
|
c@243
|
171
|
c@243
|
172 fprintf(stderr, "HMM state sequence:\n");
|
c@243
|
173 for (i = 0; i < frames_read; i++)
|
c@243
|
174 fprintf(stderr, "%d ", q[i]);
|
c@243
|
175 fprintf(stderr, "\n\n");
|
c@243
|
176
|
c@243
|
177 /* create histograms of states */
|
c@243
|
178 double* h = (double*) malloc(frames_read*nHMM_states*sizeof(double)); /* vector in row major order */
|
c@243
|
179 create_histograms(q, frames_read, nHMM_states, histogram_length, h);
|
c@243
|
180
|
c@243
|
181 /* cluster the histograms */
|
c@243
|
182 int nbsched = 20; /* length of inverse temperature schedule */
|
c@243
|
183 double* bsched = (double*) malloc(nbsched*sizeof(double)); /* inverse temperature schedule */
|
c@243
|
184 double b0 = 100;
|
c@243
|
185 double alpha = 0.7;
|
c@243
|
186 bsched[0] = b0;
|
c@243
|
187 for (i = 1; i < nbsched; i++)
|
c@243
|
188 bsched[i] = alpha * bsched[i-1];
|
c@243
|
189 cluster_melt(h, nHMM_states, frames_read, bsched, nbsched, nclusters, neighbour_limit, q);
|
c@243
|
190
|
c@243
|
191 /* now q holds a sequence of cluster assignments */
|
c@243
|
192
|
c@243
|
193 free(h);
|
c@243
|
194 free(bsched);
|
c@243
|
195 }
|
c@243
|
196
|
c@243
|
197 /* segment constant-Q or chroma features */
|
c@243
|
198 void constq_segment(int* q, double** features, int frames_read, int bins, int ncoeff, int feature_type,
|
c@243
|
199 int nHMM_states, int histogram_length, int nclusters, int neighbour_limit)
|
c@243
|
200 {
|
c@243
|
201 int feature_length;
|
c@243
|
202 double** chroma;
|
c@243
|
203 int i;
|
c@243
|
204
|
c@243
|
205 if (feature_type == FEATURE_TYPE_CONSTQ)
|
c@243
|
206 {
|
c@243
|
207 fprintf(stderr, "Converting to dB and normalising...\n");
|
c@243
|
208
|
c@243
|
209 mpeg7_constq(features, frames_read, ncoeff);
|
c@243
|
210
|
c@243
|
211 fprintf(stderr, "Running PCA...\n");
|
c@243
|
212
|
c@243
|
213 /* do PCA on the features (but not the envelope) */
|
c@243
|
214 int ncomponents = 20;
|
c@243
|
215 pca_project(features, frames_read, ncoeff, ncomponents);
|
c@243
|
216
|
c@243
|
217 /* copy the envelope so that it immediatly follows the chosen components */
|
c@243
|
218 for (i = 0; i < frames_read; i++)
|
c@243
|
219 features[i][ncomponents] = features[i][ncoeff];
|
c@243
|
220
|
c@243
|
221 feature_length = ncomponents + 1;
|
c@243
|
222
|
c@243
|
223 /**************************************
|
c@243
|
224 //TEST
|
c@243
|
225 // feature file name
|
c@243
|
226 char* dir = "/Users/mark/documents/semma/audio/";
|
c@243
|
227 char* file_name = (char*) malloc((strlen(dir) + strlen(trackname) + strlen("_features_c20r8h0.2f0.6.mat") + 1)*sizeof(char));
|
c@243
|
228 strcpy(file_name, dir);
|
c@243
|
229 strcat(file_name, trackname);
|
c@243
|
230 strcat(file_name, "_features_c20r8h0.2f0.6.mat");
|
c@243
|
231
|
c@243
|
232 // get the features from Matlab from mat-file
|
c@243
|
233 int frames_in_file;
|
c@243
|
234 readmatarray_size(file_name, 2, &frames_in_file, &feature_length);
|
c@243
|
235 readmatarray(file_name, 2, frames_in_file, feature_length, features);
|
c@243
|
236 // copy final frame to ensure that we get as many as we expected
|
c@243
|
237 int missing_frames = frames_read - frames_in_file;
|
c@243
|
238 while (missing_frames > 0)
|
c@243
|
239 {
|
c@243
|
240 for (i = 0; i < feature_length; i++)
|
c@243
|
241 features[frames_read-missing_frames][i] = features[frames_read-missing_frames-1][i];
|
c@243
|
242 --missing_frames;
|
c@243
|
243 }
|
c@243
|
244
|
c@243
|
245 free(file_name);
|
c@243
|
246 ******************************************/
|
c@243
|
247
|
c@243
|
248 cluster_segment(q, features, frames_read, feature_length, nHMM_states, histogram_length, nclusters, neighbour_limit);
|
c@243
|
249 }
|
c@243
|
250
|
c@243
|
251 if (feature_type == FEATURE_TYPE_CHROMA)
|
c@243
|
252 {
|
c@243
|
253 fprintf(stderr, "Converting to chroma features...\n");
|
c@243
|
254
|
c@243
|
255 /* convert constant-Q to normalised chroma features */
|
c@243
|
256 chroma = (double**) malloc(frames_read*sizeof(double*));
|
c@243
|
257 for (i = 0; i < frames_read; i++)
|
c@243
|
258 chroma[i] = (double*) malloc(bins*sizeof(double));
|
c@243
|
259 cq2chroma(features, frames_read, ncoeff, bins, chroma);
|
c@243
|
260 feature_length = bins;
|
c@243
|
261
|
c@243
|
262 cluster_segment(q, chroma, frames_read, feature_length, nHMM_states, histogram_length, nclusters, neighbour_limit);
|
c@243
|
263
|
c@243
|
264 for (i = 0; i < frames_read; i++)
|
c@243
|
265 free(chroma[i]);
|
c@243
|
266 free(chroma);
|
c@243
|
267 }
|
c@243
|
268 }
|
c@243
|
269
|
c@243
|
270
|
c@243
|
271
|