diff dsp/segmentation/cluster_segmenter.c @ 243:dc30e3864ceb

* merge in segmentation code from soundbite plugin/library repository
author Chris Cannam <c.cannam@qmul.ac.uk>
date Wed, 09 Jan 2008 10:46:25 +0000
parents
children 8bdbda7fb893
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/dsp/segmentation/cluster_segmenter.c	Wed Jan 09 10:46:25 2008 +0000
@@ -0,0 +1,271 @@
+/*
+ *  cluster_segmenter.c
+ *  soundbite
+ *
+ *  Created by Mark Levy on 06/04/2006.
+ *  Copyright 2006 Centre for Digital Music, Queen Mary, University of London. All rights reserved.
+ *
+ */
+
+#include "cluster_segmenter.h"
+
+extern int readmatarray_size(const char *filepath, int n_array, int* t, int* d);
+extern int readmatarray(const char *filepath, int n_array, int t, int d, double** arr);
+
+/* converts constant-Q features to normalised chroma */
+void cq2chroma(double** cq, int nframes, int ncoeff, int bins, double** chroma)
+{
+	int noct = ncoeff / bins;	/* number of complete octaves in constant-Q */
+	int t, b, oct, ix;
+	//double maxchroma;	/* max chroma value at each time, for normalisation */
+	//double sum;		/* for normalisation */
+	
+	for (t = 0; t < nframes; t++)
+	{
+		for (b = 0; b < bins; b++)
+			chroma[t][b] = 0;
+		for (oct = 0; oct < noct; oct++)
+		{
+			ix = oct * bins;
+			for (b = 0; b < bins; b++)
+				chroma[t][b] += fabs(cq[t][ix+b]);
+		}
+		/* normalise to unit sum
+		sum = 0;
+		for (b = 0; b < bins; b++)
+			sum += chroma[t][b];
+		for (b = 0; b < bins; b++)
+			chroma[t][b] /= sum;
+		/* normalise to unit max - NO this made results much worse!
+		maxchroma = 0;
+		for (b = 0; b < bins; b++)
+			if (chroma[t][b] > maxchroma)
+				maxchroma = chroma[t][b];
+		if (maxchroma > 0)
+			for (b = 0; b < bins; b++)
+				chroma[t][b] /= maxchroma;	
+		*/
+	}
+}
+
+/* applies MPEG-7 normalisation to constant-Q features, storing normalised envelope (norm) in last feature dimension */
+void mpeg7_constq(double** features, int nframes, int ncoeff)
+{
+	int i, j;
+	double ss;
+	double env;
+	double maxenv = 0;
+	
+	/* convert const-Q features to dB scale */
+	for (i = 0; i < nframes; i++)
+		for (j = 0; j < ncoeff; j++)
+			features[i][j] = 10.0 * log10(features[i][j]+DBL_EPSILON);
+	
+	/* normalise each feature vector and add the norm as an extra feature dimension */	
+	for (i = 0; i < nframes; i++)
+	{
+		ss = 0;
+		for (j = 0; j < ncoeff; j++)
+			ss += features[i][j] * features[i][j];
+		env = sqrt(ss);
+		for (j = 0; j < ncoeff; j++)
+			features[i][j] /= env;
+		features[i][ncoeff] = env;
+		if (env > maxenv)
+			maxenv = env;
+	} 
+	/* normalise the envelopes */
+	for (i = 0; i < nframes; i++)
+		features[i][ncoeff] /= maxenv;	
+}
+
+/* return histograms h[nx*m] of data x[nx] into m bins using a sliding window of length h_len (MUST BE ODD) */
+/* NB h is a vector in row major order, as required by cluster_melt() */
+/* for historical reasons we normalise the histograms by their norm (not to sum to one) */
+void create_histograms(int* x, int nx, int m, int hlen, double* h)
+{
+	int i, j, t;
+	double norm;
+	for (i = hlen/2; i < nx-hlen/2; i++)
+	{
+		for (j = 0; j < m; j++)
+			h[i*m+j] = 0;
+		for (t = i-hlen/2; t <= i+hlen/2; t++)
+			++h[i*m+x[t]];
+		norm = 0;
+		for (j = 0; j < m; j++)
+			norm += h[i*m+j] * h[i*m+j];
+		for (j = 0; j < m; j++)
+			h[i*m+j] /= norm;
+	}
+	
+	/* duplicate histograms at beginning and end to create one histogram for each data value supplied */
+	for (i = 0; i < hlen/2; i++)
+		for (j = 0; j < m; j++)
+			h[i*m+j] = h[hlen/2*m+j];
+	for (i = nx-hlen/2; i < nx; i++)
+		for (j = 0; j < m; j++)
+			h[i*m+j] = h[(nx-hlen/2-1)*m+j];
+}
+
+/* segment using HMM and then histogram clustering */
+void cluster_segment(int* q, double** features, int frames_read, int feature_length, int nHMM_states, 
+					 int histogram_length, int nclusters, int neighbour_limit)
+{
+	int i, j;
+	
+	/*****************************/
+	if (0) {
+	/* try just using the predominant bin number as a 'decoded state' */
+	nHMM_states = feature_length + 1;	/* allow a 'zero' state */
+	double chroma_thresh = 0.05;
+	double maxval;
+	int maxbin;
+	for (i = 0; i < frames_read; i++)
+	{
+		maxval = 0;
+		for (j = 0; j < feature_length; j++)
+		{
+			if (features[i][j] > maxval) 
+			{
+				maxval = features[i][j];
+				maxbin = j;
+			}				
+		}
+		if (maxval > chroma_thresh)
+			q[i] = maxbin;
+		else
+			q[i] = feature_length;
+	}
+	
+	}
+	if (1) {
+	/*****************************/
+		
+	
+	/* scale all the features to 'balance covariances' during HMM training */
+	double scale = 10;
+	for (i = 0; i < frames_read; i++)
+		for (j = 0; j < feature_length; j++)
+			features[i][j] *= scale;
+	
+	/* train an HMM on the features */
+	
+	/* create a model */
+	model_t* model = hmm_init(features, frames_read, feature_length, nHMM_states);
+	
+	/* train the model */
+	hmm_train(features, frames_read, model);
+	
+	printf("\n\nafter training:\n");
+	hmm_print(model);
+	
+	/* decode the hidden state sequence */
+	viterbi_decode(features, frames_read, model, q);  
+	hmm_close(model);
+	
+	/*****************************/
+	}
+	/*****************************/
+	
+    
+	fprintf(stderr, "HMM state sequence:\n");
+	for (i = 0; i < frames_read; i++)
+		fprintf(stderr, "%d ", q[i]);
+	fprintf(stderr, "\n\n");
+	
+	/* create histograms of states */
+	double* h = (double*) malloc(frames_read*nHMM_states*sizeof(double));	/* vector in row major order */
+	create_histograms(q, frames_read, nHMM_states, histogram_length, h);
+	
+	/* cluster the histograms */
+	int nbsched = 20;	/* length of inverse temperature schedule */
+	double* bsched = (double*) malloc(nbsched*sizeof(double));	/* inverse temperature schedule */
+	double b0 = 100;
+	double alpha = 0.7;
+	bsched[0] = b0;
+	for (i = 1; i < nbsched; i++)
+		bsched[i] = alpha * bsched[i-1];
+	cluster_melt(h, nHMM_states, frames_read, bsched, nbsched, nclusters, neighbour_limit, q);
+	
+	/* now q holds a sequence of cluster assignments */
+	
+	free(h);  
+	free(bsched);
+}
+
+/* segment constant-Q or chroma features */
+void constq_segment(int* q, double** features, int frames_read, int bins, int ncoeff, int feature_type, 
+			 int nHMM_states, int histogram_length, int nclusters, int neighbour_limit)
+{
+	int feature_length;
+	double** chroma;
+	int i;
+	
+	if (feature_type == FEATURE_TYPE_CONSTQ)
+	{
+		fprintf(stderr, "Converting to dB and normalising...\n");
+		
+		mpeg7_constq(features, frames_read, ncoeff);
+		
+		fprintf(stderr, "Running PCA...\n");
+		
+		/* do PCA on the features (but not the envelope) */
+		int ncomponents = 20;
+		pca_project(features, frames_read, ncoeff, ncomponents);
+		
+		/* copy the envelope so that it immediatly follows the chosen components */
+		for (i = 0; i < frames_read; i++)
+			features[i][ncomponents] = features[i][ncoeff];	
+		
+		feature_length = ncomponents + 1;
+		
+		/**************************************
+		//TEST
+		// feature file name
+		char* dir = "/Users/mark/documents/semma/audio/";
+		char* file_name = (char*) malloc((strlen(dir) + strlen(trackname) + strlen("_features_c20r8h0.2f0.6.mat") + 1)*sizeof(char));
+		strcpy(file_name, dir);
+		strcat(file_name, trackname);
+		strcat(file_name, "_features_c20r8h0.2f0.6.mat");
+		
+		// get the features from Matlab from mat-file
+		int frames_in_file;
+		readmatarray_size(file_name, 2, &frames_in_file, &feature_length);
+		readmatarray(file_name, 2, frames_in_file, feature_length, features);
+		// copy final frame to ensure that we get as many as we expected
+		int missing_frames = frames_read - frames_in_file;
+		while (missing_frames > 0)
+		{
+			for (i = 0; i < feature_length; i++)
+				features[frames_read-missing_frames][i] = features[frames_read-missing_frames-1][i];
+			--missing_frames;
+		}
+		
+		free(file_name);
+		******************************************/
+	
+		cluster_segment(q, features, frames_read, feature_length, nHMM_states, histogram_length, nclusters, neighbour_limit);
+	}
+	
+	if (feature_type == FEATURE_TYPE_CHROMA)
+	{
+		fprintf(stderr, "Converting to chroma features...\n");
+		
+		/* convert constant-Q to normalised chroma features */
+		chroma = (double**) malloc(frames_read*sizeof(double*));
+		for (i = 0; i < frames_read; i++)
+			chroma[i] = (double*) malloc(bins*sizeof(double));
+		cq2chroma(features, frames_read, ncoeff, bins, chroma);
+		feature_length = bins;
+		
+		cluster_segment(q, chroma, frames_read, feature_length, nHMM_states, histogram_length, nclusters, neighbour_limit);
+	
+		for (i = 0; i < frames_read; i++)
+			free(chroma[i]);
+		free(chroma);
+	}
+}
+
+
+