c@243
|
1 /*
|
c@243
|
2 * cluster_segmenter.c
|
c@243
|
3 * soundbite
|
c@243
|
4 *
|
c@243
|
5 * Created by Mark Levy on 06/04/2006.
|
c@309
|
6 * Copyright 2006 Centre for Digital Music, Queen Mary, University of London.
|
c@309
|
7
|
c@309
|
8 This program is free software; you can redistribute it and/or
|
c@309
|
9 modify it under the terms of the GNU General Public License as
|
c@309
|
10 published by the Free Software Foundation; either version 2 of the
|
c@309
|
11 License, or (at your option) any later version. See the file
|
c@309
|
12 COPYING included with this distribution for more information.
|
c@243
|
13 *
|
c@243
|
14 */
|
c@243
|
15
|
c@243
|
16 #include "cluster_segmenter.h"
|
c@243
|
17
|
c@243
|
18 extern int readmatarray_size(const char *filepath, int n_array, int* t, int* d);
|
c@243
|
19 extern int readmatarray(const char *filepath, int n_array, int t, int d, double** arr);
|
c@243
|
20
|
c@243
|
21 /* converts constant-Q features to normalised chroma */
|
c@243
|
22 void cq2chroma(double** cq, int nframes, int ncoeff, int bins, double** chroma)
|
c@243
|
23 {
|
c@243
|
24 int noct = ncoeff / bins; /* number of complete octaves in constant-Q */
|
c@243
|
25 int t, b, oct, ix;
|
c@243
|
26 //double maxchroma; /* max chroma value at each time, for normalisation */
|
c@243
|
27 //double sum; /* for normalisation */
|
c@243
|
28
|
c@243
|
29 for (t = 0; t < nframes; t++)
|
c@243
|
30 {
|
c@243
|
31 for (b = 0; b < bins; b++)
|
c@243
|
32 chroma[t][b] = 0;
|
c@243
|
33 for (oct = 0; oct < noct; oct++)
|
c@243
|
34 {
|
c@243
|
35 ix = oct * bins;
|
c@243
|
36 for (b = 0; b < bins; b++)
|
c@243
|
37 chroma[t][b] += fabs(cq[t][ix+b]);
|
c@243
|
38 }
|
c@243
|
39 /* normalise to unit sum
|
c@243
|
40 sum = 0;
|
c@243
|
41 for (b = 0; b < bins; b++)
|
c@243
|
42 sum += chroma[t][b];
|
c@243
|
43 for (b = 0; b < bins; b++)
|
c@243
|
44 chroma[t][b] /= sum;
|
c@245
|
45 */
|
c@243
|
46 /* normalise to unit max - NO this made results much worse!
|
c@243
|
47 maxchroma = 0;
|
c@243
|
48 for (b = 0; b < bins; b++)
|
c@243
|
49 if (chroma[t][b] > maxchroma)
|
c@243
|
50 maxchroma = chroma[t][b];
|
c@243
|
51 if (maxchroma > 0)
|
c@243
|
52 for (b = 0; b < bins; b++)
|
c@243
|
53 chroma[t][b] /= maxchroma;
|
c@243
|
54 */
|
c@243
|
55 }
|
c@243
|
56 }
|
c@243
|
57
|
c@243
|
58 /* applies MPEG-7 normalisation to constant-Q features, storing normalised envelope (norm) in last feature dimension */
|
c@243
|
59 void mpeg7_constq(double** features, int nframes, int ncoeff)
|
c@243
|
60 {
|
c@243
|
61 int i, j;
|
c@243
|
62 double ss;
|
c@243
|
63 double env;
|
c@243
|
64 double maxenv = 0;
|
c@243
|
65
|
c@243
|
66 /* convert const-Q features to dB scale */
|
c@243
|
67 for (i = 0; i < nframes; i++)
|
c@243
|
68 for (j = 0; j < ncoeff; j++)
|
c@243
|
69 features[i][j] = 10.0 * log10(features[i][j]+DBL_EPSILON);
|
c@243
|
70
|
c@243
|
71 /* normalise each feature vector and add the norm as an extra feature dimension */
|
c@243
|
72 for (i = 0; i < nframes; i++)
|
c@243
|
73 {
|
c@243
|
74 ss = 0;
|
c@243
|
75 for (j = 0; j < ncoeff; j++)
|
c@243
|
76 ss += features[i][j] * features[i][j];
|
c@243
|
77 env = sqrt(ss);
|
c@243
|
78 for (j = 0; j < ncoeff; j++)
|
c@243
|
79 features[i][j] /= env;
|
c@243
|
80 features[i][ncoeff] = env;
|
c@243
|
81 if (env > maxenv)
|
c@243
|
82 maxenv = env;
|
c@243
|
83 }
|
c@243
|
84 /* normalise the envelopes */
|
c@243
|
85 for (i = 0; i < nframes; i++)
|
c@243
|
86 features[i][ncoeff] /= maxenv;
|
c@243
|
87 }
|
c@243
|
88
|
c@243
|
89 /* return histograms h[nx*m] of data x[nx] into m bins using a sliding window of length h_len (MUST BE ODD) */
|
c@243
|
90 /* NB h is a vector in row major order, as required by cluster_melt() */
|
c@243
|
91 /* for historical reasons we normalise the histograms by their norm (not to sum to one) */
|
c@243
|
92 void create_histograms(int* x, int nx, int m, int hlen, double* h)
|
c@243
|
93 {
|
c@243
|
94 int i, j, t;
|
c@243
|
95 double norm;
|
c@266
|
96
|
c@266
|
97 for (i = 0; i < nx*m; i++)
|
c@266
|
98 h[i] = 0;
|
c@266
|
99
|
c@243
|
100 for (i = hlen/2; i < nx-hlen/2; i++)
|
c@243
|
101 {
|
c@243
|
102 for (j = 0; j < m; j++)
|
c@243
|
103 h[i*m+j] = 0;
|
c@243
|
104 for (t = i-hlen/2; t <= i+hlen/2; t++)
|
c@243
|
105 ++h[i*m+x[t]];
|
c@243
|
106 norm = 0;
|
c@243
|
107 for (j = 0; j < m; j++)
|
c@243
|
108 norm += h[i*m+j] * h[i*m+j];
|
c@243
|
109 for (j = 0; j < m; j++)
|
c@243
|
110 h[i*m+j] /= norm;
|
c@243
|
111 }
|
c@243
|
112
|
c@243
|
113 /* duplicate histograms at beginning and end to create one histogram for each data value supplied */
|
c@243
|
114 for (i = 0; i < hlen/2; i++)
|
c@243
|
115 for (j = 0; j < m; j++)
|
c@243
|
116 h[i*m+j] = h[hlen/2*m+j];
|
c@243
|
117 for (i = nx-hlen/2; i < nx; i++)
|
c@243
|
118 for (j = 0; j < m; j++)
|
c@243
|
119 h[i*m+j] = h[(nx-hlen/2-1)*m+j];
|
c@243
|
120 }
|
c@243
|
121
|
c@243
|
122 /* segment using HMM and then histogram clustering */
|
c@243
|
123 void cluster_segment(int* q, double** features, int frames_read, int feature_length, int nHMM_states,
|
c@243
|
124 int histogram_length, int nclusters, int neighbour_limit)
|
c@243
|
125 {
|
c@243
|
126 int i, j;
|
c@243
|
127
|
c@243
|
128 /*****************************/
|
c@243
|
129 if (0) {
|
c@243
|
130 /* try just using the predominant bin number as a 'decoded state' */
|
c@243
|
131 nHMM_states = feature_length + 1; /* allow a 'zero' state */
|
c@243
|
132 double chroma_thresh = 0.05;
|
c@243
|
133 double maxval;
|
c@243
|
134 int maxbin;
|
c@243
|
135 for (i = 0; i < frames_read; i++)
|
c@243
|
136 {
|
c@243
|
137 maxval = 0;
|
c@243
|
138 for (j = 0; j < feature_length; j++)
|
c@243
|
139 {
|
c@243
|
140 if (features[i][j] > maxval)
|
c@243
|
141 {
|
c@243
|
142 maxval = features[i][j];
|
c@243
|
143 maxbin = j;
|
c@243
|
144 }
|
c@243
|
145 }
|
c@243
|
146 if (maxval > chroma_thresh)
|
c@243
|
147 q[i] = maxbin;
|
c@243
|
148 else
|
c@243
|
149 q[i] = feature_length;
|
c@243
|
150 }
|
c@243
|
151
|
c@243
|
152 }
|
c@243
|
153 if (1) {
|
c@243
|
154 /*****************************/
|
c@243
|
155
|
c@243
|
156
|
c@243
|
157 /* scale all the features to 'balance covariances' during HMM training */
|
c@243
|
158 double scale = 10;
|
c@243
|
159 for (i = 0; i < frames_read; i++)
|
c@243
|
160 for (j = 0; j < feature_length; j++)
|
c@243
|
161 features[i][j] *= scale;
|
c@243
|
162
|
c@243
|
163 /* train an HMM on the features */
|
c@243
|
164
|
c@243
|
165 /* create a model */
|
c@243
|
166 model_t* model = hmm_init(features, frames_read, feature_length, nHMM_states);
|
c@243
|
167
|
c@243
|
168 /* train the model */
|
c@243
|
169 hmm_train(features, frames_read, model);
|
c@283
|
170 /*
|
c@243
|
171 printf("\n\nafter training:\n");
|
c@243
|
172 hmm_print(model);
|
c@283
|
173 */
|
c@243
|
174 /* decode the hidden state sequence */
|
c@243
|
175 viterbi_decode(features, frames_read, model, q);
|
c@243
|
176 hmm_close(model);
|
c@243
|
177
|
c@243
|
178 /*****************************/
|
c@243
|
179 }
|
c@243
|
180 /*****************************/
|
c@243
|
181
|
c@243
|
182
|
c@283
|
183 /*
|
c@243
|
184 fprintf(stderr, "HMM state sequence:\n");
|
c@243
|
185 for (i = 0; i < frames_read; i++)
|
c@243
|
186 fprintf(stderr, "%d ", q[i]);
|
c@243
|
187 fprintf(stderr, "\n\n");
|
c@283
|
188 */
|
c@243
|
189
|
c@243
|
190 /* create histograms of states */
|
c@243
|
191 double* h = (double*) malloc(frames_read*nHMM_states*sizeof(double)); /* vector in row major order */
|
c@243
|
192 create_histograms(q, frames_read, nHMM_states, histogram_length, h);
|
c@243
|
193
|
c@243
|
194 /* cluster the histograms */
|
c@243
|
195 int nbsched = 20; /* length of inverse temperature schedule */
|
c@243
|
196 double* bsched = (double*) malloc(nbsched*sizeof(double)); /* inverse temperature schedule */
|
c@243
|
197 double b0 = 100;
|
c@243
|
198 double alpha = 0.7;
|
c@243
|
199 bsched[0] = b0;
|
c@243
|
200 for (i = 1; i < nbsched; i++)
|
c@243
|
201 bsched[i] = alpha * bsched[i-1];
|
c@243
|
202 cluster_melt(h, nHMM_states, frames_read, bsched, nbsched, nclusters, neighbour_limit, q);
|
c@243
|
203
|
c@243
|
204 /* now q holds a sequence of cluster assignments */
|
c@243
|
205
|
c@243
|
206 free(h);
|
c@243
|
207 free(bsched);
|
c@243
|
208 }
|
c@243
|
209
|
c@243
|
210 /* segment constant-Q or chroma features */
|
c@243
|
211 void constq_segment(int* q, double** features, int frames_read, int bins, int ncoeff, int feature_type,
|
c@243
|
212 int nHMM_states, int histogram_length, int nclusters, int neighbour_limit)
|
c@243
|
213 {
|
c@243
|
214 int feature_length;
|
c@243
|
215 double** chroma;
|
c@243
|
216 int i;
|
c@243
|
217
|
c@243
|
218 if (feature_type == FEATURE_TYPE_CONSTQ)
|
c@243
|
219 {
|
c@283
|
220 /* fprintf(stderr, "Converting to dB and normalising...\n");
|
c@283
|
221 */
|
c@243
|
222 mpeg7_constq(features, frames_read, ncoeff);
|
c@283
|
223 /*
|
c@243
|
224 fprintf(stderr, "Running PCA...\n");
|
c@283
|
225 */
|
c@243
|
226 /* do PCA on the features (but not the envelope) */
|
c@243
|
227 int ncomponents = 20;
|
c@243
|
228 pca_project(features, frames_read, ncoeff, ncomponents);
|
c@243
|
229
|
c@243
|
230 /* copy the envelope so that it immediatly follows the chosen components */
|
c@243
|
231 for (i = 0; i < frames_read; i++)
|
c@243
|
232 features[i][ncomponents] = features[i][ncoeff];
|
c@243
|
233
|
c@243
|
234 feature_length = ncomponents + 1;
|
c@243
|
235
|
c@243
|
236 /**************************************
|
c@243
|
237 //TEST
|
c@243
|
238 // feature file name
|
c@243
|
239 char* dir = "/Users/mark/documents/semma/audio/";
|
c@243
|
240 char* file_name = (char*) malloc((strlen(dir) + strlen(trackname) + strlen("_features_c20r8h0.2f0.6.mat") + 1)*sizeof(char));
|
c@243
|
241 strcpy(file_name, dir);
|
c@243
|
242 strcat(file_name, trackname);
|
c@243
|
243 strcat(file_name, "_features_c20r8h0.2f0.6.mat");
|
c@243
|
244
|
c@243
|
245 // get the features from Matlab from mat-file
|
c@243
|
246 int frames_in_file;
|
c@243
|
247 readmatarray_size(file_name, 2, &frames_in_file, &feature_length);
|
c@243
|
248 readmatarray(file_name, 2, frames_in_file, feature_length, features);
|
c@243
|
249 // copy final frame to ensure that we get as many as we expected
|
c@243
|
250 int missing_frames = frames_read - frames_in_file;
|
c@243
|
251 while (missing_frames > 0)
|
c@243
|
252 {
|
c@243
|
253 for (i = 0; i < feature_length; i++)
|
c@243
|
254 features[frames_read-missing_frames][i] = features[frames_read-missing_frames-1][i];
|
c@243
|
255 --missing_frames;
|
c@243
|
256 }
|
c@243
|
257
|
c@243
|
258 free(file_name);
|
c@243
|
259 ******************************************/
|
c@243
|
260
|
c@243
|
261 cluster_segment(q, features, frames_read, feature_length, nHMM_states, histogram_length, nclusters, neighbour_limit);
|
c@243
|
262 }
|
c@243
|
263
|
c@243
|
264 if (feature_type == FEATURE_TYPE_CHROMA)
|
c@243
|
265 {
|
c@283
|
266 /*
|
c@243
|
267 fprintf(stderr, "Converting to chroma features...\n");
|
c@283
|
268 */
|
c@243
|
269 /* convert constant-Q to normalised chroma features */
|
c@243
|
270 chroma = (double**) malloc(frames_read*sizeof(double*));
|
c@243
|
271 for (i = 0; i < frames_read; i++)
|
c@243
|
272 chroma[i] = (double*) malloc(bins*sizeof(double));
|
c@243
|
273 cq2chroma(features, frames_read, ncoeff, bins, chroma);
|
c@243
|
274 feature_length = bins;
|
c@243
|
275
|
c@243
|
276 cluster_segment(q, chroma, frames_read, feature_length, nHMM_states, histogram_length, nclusters, neighbour_limit);
|
c@243
|
277
|
c@243
|
278 for (i = 0; i < frames_read; i++)
|
c@243
|
279 free(chroma[i]);
|
c@243
|
280 free(chroma);
|
c@243
|
281 }
|
c@243
|
282 }
|
c@243
|
283
|
c@243
|
284
|
c@243
|
285
|