annotate scripts_R/PlotOutliersCountry.R @ 77:bde45ce0eeab branch-tests

plots and figures for results
author Maria Panteli <m.x.panteli@gmail.com>
date Fri, 22 Sep 2017 18:02:59 +0100
parents cc028157502a
children 103f7411c3ad
rev   line source
Maria@70 1 source("MetadataPlots.R")
Maria@70 2
m@77 3 PlotCountryOutliers(df=read.csv("../data/results/global_outliers.csv",header=TRUE), output="../data/results/global_outliers.pdf")
m@77 4 PlotCountryOutliers(df=read.csv("../data/results/global_outliers_rhy.csv",header=TRUE), output="../data/results/global_outliers_rhy.pdf")
m@77 5 PlotCountryOutliers(df=read.csv("../data/results/global_outliers_mel.csv",header=TRUE), output="../data/results/global_outliers_mel.pdf")
m@77 6 PlotCountryOutliers(df=read.csv("../data/results/global_outliers_mfc.csv",header=TRUE), output="../data/results/global_outliers_mfc.pdf")
m@77 7 PlotCountryOutliers(df=read.csv("../data/results/global_outliers_chr.csv",header=TRUE), output="../data/results/global_outliers_chr.pdf")
m@77 8 PlotCountryOutliers(df=read.csv("../data/results/spatial_outliers.csv",header=TRUE), output="../data/results/spatial_outliers.pdf")
Maria@70 9
m@77 10 library(ape)
m@77 11 library(cluster)
m@77 12
m@77 13 df = read.csv("../data/results/cluster_freq.csv")
m@77 14 data = df[,2:dim(df)[2]]
m@77 15 rownames(data) <- df$labels
m@77 16 distMahal = as.dist(apply(data, 1, function(i) mahalanobis(data, i, cov = cov(data),tol=1e-18)))
m@77 17 hc=hclust(distMahal, method="average")
m@77 18 mypal = c("#000000", "#9B0000", "#9B0000", "#9B0000", "#9B0000")
m@77 19 clus5 = cutree(hc, 5)
m@77 20 pdf('../data/results/hierarchical_cluster.pdf')
m@77 21 par(mar=c(1,1,1,1))
m@77 22 plot(as.phylo(hc),type="fan",tip.color=mypal[clus5], cex=.5, label.offset=.5)
m@77 23 dev.off()