Maria@70
|
1 source("MetadataPlots.R")
|
Maria@70
|
2
|
m@77
|
3 PlotCountryOutliers(df=read.csv("../data/results/global_outliers.csv",header=TRUE), output="../data/results/global_outliers.pdf")
|
m@77
|
4 PlotCountryOutliers(df=read.csv("../data/results/global_outliers_rhy.csv",header=TRUE), output="../data/results/global_outliers_rhy.pdf")
|
m@77
|
5 PlotCountryOutliers(df=read.csv("../data/results/global_outliers_mel.csv",header=TRUE), output="../data/results/global_outliers_mel.pdf")
|
m@77
|
6 PlotCountryOutliers(df=read.csv("../data/results/global_outliers_mfc.csv",header=TRUE), output="../data/results/global_outliers_mfc.pdf")
|
m@77
|
7 PlotCountryOutliers(df=read.csv("../data/results/global_outliers_chr.csv",header=TRUE), output="../data/results/global_outliers_chr.pdf")
|
m@77
|
8 PlotCountryOutliers(df=read.csv("../data/results/spatial_outliers.csv",header=TRUE), output="../data/results/spatial_outliers.pdf")
|
Maria@70
|
9
|
m@77
|
10 library(ape)
|
m@77
|
11 library(cluster)
|
m@77
|
12
|
m@77
|
13 df = read.csv("../data/results/cluster_freq.csv")
|
m@77
|
14 data = df[,2:dim(df)[2]]
|
m@77
|
15 rownames(data) <- df$labels
|
m@77
|
16 distMahal = as.dist(apply(data, 1, function(i) mahalanobis(data, i, cov = cov(data),tol=1e-18)))
|
m@77
|
17 hc=hclust(distMahal, method="average")
|
m@77
|
18 mypal = c("#000000", "#9B0000", "#9B0000", "#9B0000", "#9B0000")
|
m@77
|
19 clus5 = cutree(hc, 5)
|
m@77
|
20 pdf('../data/results/hierarchical_cluster.pdf')
|
m@77
|
21 par(mar=c(1,1,1,1))
|
m@77
|
22 plot(as.phylo(hc),type="fan",tip.color=mypal[clus5], cex=.5, label.offset=.5)
|
m@77
|
23 dev.off()
|