Mercurial > hg > plosone_underreview
comparison scripts_R/PlotOutliersCountry.R @ 77:bde45ce0eeab branch-tests
plots and figures for results
author | Maria Panteli <m.x.panteli@gmail.com> |
---|---|
date | Fri, 22 Sep 2017 18:02:59 +0100 |
parents | cc028157502a |
children | 103f7411c3ad |
comparison
equal
deleted
inserted
replaced
76:d17833be50ca | 77:bde45ce0eeab |
---|---|
1 source("MetadataPlots.R") | 1 source("MetadataPlots.R") |
2 | 2 |
3 PlotCountryOutliers(df=read.csv("data/global_outliers.csv",header=TRUE), output="data/global_outliers.pdf") | 3 PlotCountryOutliers(df=read.csv("../data/results/global_outliers.csv",header=TRUE), output="../data/results/global_outliers.pdf") |
4 PlotCountryOutliers(df=read.csv("data/global_outliers_rhy.csv",header=TRUE), output="data/global_outliers_rhy.pdf") | 4 PlotCountryOutliers(df=read.csv("../data/results/global_outliers_rhy.csv",header=TRUE), output="../data/results/global_outliers_rhy.pdf") |
5 PlotCountryOutliers(df=read.csv("data/global_outliers_mel.csv",header=TRUE), output="data/global_outliers_mel.pdf") | 5 PlotCountryOutliers(df=read.csv("../data/results/global_outliers_mel.csv",header=TRUE), output="../data/results/global_outliers_mel.pdf") |
6 PlotCountryOutliers(df=read.csv("data/global_outliers_mfc.csv",header=TRUE), output="data/global_outliers_mfc.pdf") | 6 PlotCountryOutliers(df=read.csv("../data/results/global_outliers_mfc.csv",header=TRUE), output="../data/results/global_outliers_mfc.pdf") |
7 PlotCountryOutliers(df=read.csv("data/global_outliers_chr.csv",header=TRUE), output="data/global_outliers_chr.pdf") | 7 PlotCountryOutliers(df=read.csv("../data/results/global_outliers_chr.csv",header=TRUE), output="../data/results/global_outliers_chr.pdf") |
8 PlotCountryOutliers(df=read.csv("data/spatial_outliers.csv",header=TRUE), output="data/spatial_outliers.pdf") | 8 PlotCountryOutliers(df=read.csv("../data/results/spatial_outliers.csv",header=TRUE), output="../data/results/spatial_outliers.pdf") |
9 #PlotCountryOutliers(df=read.csv("data/global_outliers_rhy_1band.csv",header=TRUE)) | |
10 | 9 |
11 require(graphics) | 10 library(ape) |
12 par(mfrow=c(2,2)) | 11 library(cluster) |
13 g1<-PlotCountryOutliers(df=read.csv("data/global_outliers_rhy.csv",header=TRUE)) | 12 |
14 g2<-PlotCountryOutliers(df=read.csv("data/global_outliers_mel.csv",header=TRUE)) | 13 df = read.csv("../data/results/cluster_freq.csv") |
15 g3<-PlotCountryOutliers(df=read.csv("data/global_outliers_mfc.csv",header=TRUE)) | 14 data = df[,2:dim(df)[2]] |
16 g4<-PlotCountryOutliers(df=read.csv("data/global_outliers_chr.csv",header=TRUE)) | 15 rownames(data) <- df$labels |
17 #do.call(addMapLegend, c(g3,labelFontSize=0.7, legendWidth=0.5, tcl=0.3, legendMar = 7, legendLabels="all",horizontal=T, legendIntervals="page")) | 16 distMahal = as.dist(apply(data, 1, function(i) mahalanobis(data, i, cov = cov(data),tol=1e-18))) |
18 #legend("bottomleft", legend = c(paste(seq(100,1,-10),'%'), 'missing countries'), fill = c(heat.colors(10, alpha = 1), 'grey'), cex = 0.56, bty = "n") | 17 hc=hclust(distMahal, method="average") |
19 legend("right", legend = c(paste(seq(90,0,-10),'-',seq(100,10,-10),'%'), 'NA'), fill = c(heat.colors(10, alpha = 1), 'grey'), cex = 0.56, bty = "o",bg="white",box.lwd=0,box.col="white") | 18 mypal = c("#000000", "#9B0000", "#9B0000", "#9B0000", "#9B0000") |
19 clus5 = cutree(hc, 5) | |
20 pdf('../data/results/hierarchical_cluster.pdf') | |
21 par(mar=c(1,1,1,1)) | |
22 plot(as.phylo(hc),type="fan",tip.color=mypal[clus5], cex=.5, label.offset=.5) | |
23 dev.off() |