Mercurial > hg > plosone_underreview
diff scripts_R/PlotOutliersCountry.R @ 77:bde45ce0eeab branch-tests
plots and figures for results
author | Maria Panteli <m.x.panteli@gmail.com> |
---|---|
date | Fri, 22 Sep 2017 18:02:59 +0100 |
parents | cc028157502a |
children | 103f7411c3ad |
line wrap: on
line diff
--- a/scripts_R/PlotOutliersCountry.R Fri Sep 22 16:30:36 2017 +0100 +++ b/scripts_R/PlotOutliersCountry.R Fri Sep 22 18:02:59 2017 +0100 @@ -1,19 +1,23 @@ source("MetadataPlots.R") -PlotCountryOutliers(df=read.csv("data/global_outliers.csv",header=TRUE), output="data/global_outliers.pdf") -PlotCountryOutliers(df=read.csv("data/global_outliers_rhy.csv",header=TRUE), output="data/global_outliers_rhy.pdf") -PlotCountryOutliers(df=read.csv("data/global_outliers_mel.csv",header=TRUE), output="data/global_outliers_mel.pdf") -PlotCountryOutliers(df=read.csv("data/global_outliers_mfc.csv",header=TRUE), output="data/global_outliers_mfc.pdf") -PlotCountryOutliers(df=read.csv("data/global_outliers_chr.csv",header=TRUE), output="data/global_outliers_chr.pdf") -PlotCountryOutliers(df=read.csv("data/spatial_outliers.csv",header=TRUE), output="data/spatial_outliers.pdf") -#PlotCountryOutliers(df=read.csv("data/global_outliers_rhy_1band.csv",header=TRUE)) +PlotCountryOutliers(df=read.csv("../data/results/global_outliers.csv",header=TRUE), output="../data/results/global_outliers.pdf") +PlotCountryOutliers(df=read.csv("../data/results/global_outliers_rhy.csv",header=TRUE), output="../data/results/global_outliers_rhy.pdf") +PlotCountryOutliers(df=read.csv("../data/results/global_outliers_mel.csv",header=TRUE), output="../data/results/global_outliers_mel.pdf") +PlotCountryOutliers(df=read.csv("../data/results/global_outliers_mfc.csv",header=TRUE), output="../data/results/global_outliers_mfc.pdf") +PlotCountryOutliers(df=read.csv("../data/results/global_outliers_chr.csv",header=TRUE), output="../data/results/global_outliers_chr.pdf") +PlotCountryOutliers(df=read.csv("../data/results/spatial_outliers.csv",header=TRUE), output="../data/results/spatial_outliers.pdf") -require(graphics) -par(mfrow=c(2,2)) -g1<-PlotCountryOutliers(df=read.csv("data/global_outliers_rhy.csv",header=TRUE)) -g2<-PlotCountryOutliers(df=read.csv("data/global_outliers_mel.csv",header=TRUE)) -g3<-PlotCountryOutliers(df=read.csv("data/global_outliers_mfc.csv",header=TRUE)) -g4<-PlotCountryOutliers(df=read.csv("data/global_outliers_chr.csv",header=TRUE)) -#do.call(addMapLegend, c(g3,labelFontSize=0.7, legendWidth=0.5, tcl=0.3, legendMar = 7, legendLabels="all",horizontal=T, legendIntervals="page")) -#legend("bottomleft", legend = c(paste(seq(100,1,-10),'%'), 'missing countries'), fill = c(heat.colors(10, alpha = 1), 'grey'), cex = 0.56, bty = "n") -legend("right", legend = c(paste(seq(90,0,-10),'-',seq(100,10,-10),'%'), 'NA'), fill = c(heat.colors(10, alpha = 1), 'grey'), cex = 0.56, bty = "o",bg="white",box.lwd=0,box.col="white") +library(ape) +library(cluster) + +df = read.csv("../data/results/cluster_freq.csv") +data = df[,2:dim(df)[2]] +rownames(data) <- df$labels +distMahal = as.dist(apply(data, 1, function(i) mahalanobis(data, i, cov = cov(data),tol=1e-18))) +hc=hclust(distMahal, method="average") +mypal = c("#000000", "#9B0000", "#9B0000", "#9B0000", "#9B0000") +clus5 = cutree(hc, 5) +pdf('../data/results/hierarchical_cluster.pdf') +par(mar=c(1,1,1,1)) +plot(as.phylo(hc),type="fan",tip.color=mypal[clus5], cex=.5, label.offset=.5) +dev.off()